• 제목/요약/키워드: $SiO_2$ particle

검색결과 479건 처리시간 0.027초

자전연소법으로 제조한 Al2O3.SiC 입자로 보강된2024/(Al2O3.SiC)p 복합재료의 기계적특성 (Mechanical Properties of 2024/(Al2O3.SiC)p Composite Reinforced with Al2O3.SiC Particle Prepared by SHS Process)

  • 맹덕영
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.35-41
    • /
    • 2000
  • Al2O3$.$SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3$.$SiC particle was applied to 2024Al/(Al2O3$.$SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3$.$SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3$.$SiC partticle by SHS process were described. The influence of the Al2O3$.$SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 ${\mu}$m and most of the particle was smaller than 2${\mu}$m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.

  • PDF

LPS-SiC 세라믹스의 제조특성에 미치는 $SiQ_2$ 입자크기의 영향 (Effects of $SiO_2$ Particle-size on Fabrication Properties of LPS-SiC Ceramics)

  • 김성훈;윤한기;김부안
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.162-165
    • /
    • 2006
  • In this study, Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method with $\beta$-SiC powder whose a particle size is 30nm and less on the average in argon condition at 1780 and $1800^{\circ}C$ under 20MPa. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of particle-size and temperature on $SiO_2$, LPS-SiC was fixed $Al_2O_3$, $Y_2O_3$ and then particle-size of $SiO_2$ were changed as two kinds. The system of particle-size and temperature on sintering additives which affects a property of sintering os well os the influence depending on particle-size and temperature of sintering additives were investigated by measurement of sintering properties. Such as measurement of sintering density, vikers hardness and observing of microstructure were investigated to make sure of the optimum condition which is about matrix of $SiC_f/SiC$ composites. Base on the composition of sintering additives, microstructure and sintering property correlation, the effect of particle-size of sintering additives are discussed. An experimental method to investigate the dynamic characteristics of bums in extreme environmental condition is established.

  • PDF

2단 튜브형 가열로 반응기에 의한 초미세 SiO2 입자의 제조 및 증착 연구 (A Study on Ultrafine SiO2 Particles Generation and Deposition by 2-Stage Tube Furnace Reactor)

  • 유수종;김교선
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.233-239
    • /
    • 1997
  • The effects of preheating the gas stream on deposition characteristics of ultrafine $SiO_2$ particles were investigated theoretically. The model equations such as mass and energy balance equations and aerosol dynamic equations were solved to predict the particle growth and deposition. The gas temperatures, $SiCl_4$ concentrations, $SiO_2$ particle volumes, $SiO_2$ particle sizes and deposition efficiencies of $SiO_2$ particles were calculated for various preheating temperatures. As the preheater setting temperature increases, the $SiO_2$ particle size distribution becomes more uniform, because the effect of $SiCl_4$ diffusion decreases.

  • PDF

SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링 (Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

스케일-업 된 초음파 분무 열분해 공정을 이용한 구형 SiO2 분말 합성 (Synthesis of spherical SiO2 using scaled-up ultrasonic pyrolysis process)

  • 강우규;이지현;김진호;황광택;장건익
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.12-18
    • /
    • 2019
  • 스케일업된 초음파 분무 열분해 공정을 이용하여 양산용 구형 $SiO_2$ 분말을 합성하였다. 초음파 분무 열분해 공정에 사용된 전구체는 20 nm에서 30 nm의 $SiO_2$ 입자를 포함한 수계 $SiO_2$ 졸을 사용하였다. 초음파 분무 열분해 공정의 구동 조건과 전구체 조건의 변화가 합성된 $SiO_2$ 입자에 미치는 영향을 알아보기 위해 반응 온도, 운반 기체 공급 속도 그리고 전구체인 수계 $SiO_2$ 졸의 농도를 조절하였다. 합성된 $SiO_2$ 입자는 공통적으로 반비정질상, 구 형태의 매끄러운 표면을 나타내었다. 구형 $SiO_2$ 입자의 크기는 반응 온도가 증가 또는 전구체 농도가 감소함에 따라 감소하였다. 또한 운반 기체 공급 속도가 증가할수록 합성된 $SiO_2$ 입자의 크기는 증가하였다. 스케일업 규모와 실험실 규모의 초음파 분무 열분해 공정의 차이점을 비교하였고, 반응관 내부 체류시간이 상대적으로 짧은 실험실 규모의 초음파 분무 열분해 공정에서 합성된 $SiO_2$ 입자가 상대적으로 큰 입도를 나타내었다.

튜브형 가열로 반응기를 이용한 초미립 $SiO_2$ 입자의 제조 및 증착에 대한 수치모사 (The Numerical Simulation of Ultrafine $SiO_2$ Particle Fabrication and Deposition by Using the Tube Furnace Reactor)

  • 김교선;현봉수
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1246-1254
    • /
    • 1995
  • A numerical model for fabrication and deposition of ultrafine SiO2 particles were proposed in the simplified horizontal MCVD apparatus using tube furnace reactor. The model equations such as energy and mass balance equations and the 0th, 1st and 2nd moment balance equations of aerosols were considered in the reactor. The phenomena of SiCl4 chemical reaction, SiO2 particle formation and coagulation, diffusion and thermophoresis of SiO2 particles were included in the aerosol dynamic equation. The profiles of gas temperature, SiCl4 concentration and SiO2 particle volume were calculated for standard conditions. The concentrations, sizes and deposition efficiencies of SiO2 particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate and inlet SiCl4 concentration.

  • PDF

SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석 (R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis)

  • 나상웅;이재형
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 (Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides)

  • 이홍림;김규영
    • 한국세라믹학회지
    • /
    • 제30권2호
    • /
    • pp.123-130
    • /
    • 1993
  • Dispersed type Al2O3-SiC composite powders were synthesized from Al-isopropoxide (Al(i-OC3H7)3) and Si(OC2H5)4 precursors by hydrolysis of mixed alkoxides and carbothermal reaction method. The characteristics of the synthesized (dispersed type) Al2O3-SiC composite powders were investigated using XRD, SEM, TEM, BET and particle size analyzer. Carbothermal reaction to produce Al2O3-SiC composite was completed in 10h at 135$0^{\circ}C$ on 3~4㎤/s (0.21~0.28cm/s) of H2 flow rate and about 1/1 of carbon/oxides(=SiO2+Al2O3) molar ratio. The synthesized powders were observed to have the mean particle size range of 0.4~1.26${\mu}{\textrm}{m}$ and showed finer particle size with increasing SiC content.

  • PDF

Improvement of Impact Properties for $Nb/MoSi_2$ Laminate Composites by the Interfacial Modification (II)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.830-835
    • /
    • 2000
  • The thermodynamical estimation of the interfacial reaction and the impact properties of $Nb/MoSi_2$ laminate composites containing SiC, $NbSi_2$ or $ZrO_2$ particles are investigated. Laminate composites, which comprise alternating layers of $MoSi_2$ with the particle and Nb foil, were fabricated by the hot press process. It is clearly found out that the interfacial reaction of $Nb/MoSi_2$ can be controlled by the addition of $ZrO_2$ particle to the $MoSi_2$ phase. The addition of $ZrO_2$ particle increases both the impact value and the sintered density of Nb/McSij, The suppression of the interfacial reaction is caused by the formation of $ZrSiO_2$ in $MoSi_2-ZrO_2$ matrix mixture.

  • PDF