• Title/Summary/Keyword: $SiO_2$ coating

Search Result 650, Processing Time 0.027 seconds

Preparation of Ferroelectric $YMnO_3$ Thin Films by Metal-Organic Decomposition Process and their Characterization (Metal-Organic Decomposition법에 의한 강유전성 $YMnO_3$ 박막의 제조 및 특성)

  • 김제헌;강승구;김응수;김유택;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.665-672
    • /
    • 2000
  • The ferroelectric YMnO3 thin films were prepared by MOD(metal-organic decomposition) method with Y- and Mn-acetylacetonate as starting materials. Thin films were grown on various substrates by spin-coating technique. The crystalline phases of the thin films were identified by X-ray diffractometer as a function of heat-treatment temperature, pH of coating solution and substrate. In addition, the effect of Mn/Y molar ratio(0.8~1.2) on the formation of hexagonal-YMnO3 phase was investigated. In forming highly c-axisoriented hexagonal-YMnO3 single phase, the Pt coated Si substrate was more effective than the bare Si substrate, and the optimum heat-treatment condition was at 82$0^{\circ}C$ for 30 min. Higher Mn/Y molar ratio within 0.8~1.2 and pH of YMnO3 precursor solution within 0.5~2.5 favored formation of ferroelectric hexagonal phase rather than orthorhombic phase. Leakage current density of the hexagonal-YMnO3 thin film formed on Pt(111)/TiO2/SiO2/Si substrate was low enough as 0.4~4.0$\times$10-8(A/$\textrm{cm}^2$) at 5 V and its remanent polarization(Pr), calculated from the P-E hysteresis loop, was 3 nC/$\textrm{cm}^2$.

  • PDF

The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers (무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교)

  • Kim, M.;Chang, D. Y.;Jeong, Y. S.;Ro, B. H.;Lee, K. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF

Design and Characteristics of Anti-reflection Coating using Multi-layer Thin Film on the Ferrule Facet (다층 박막을 이용한 패럴 단면의 무반사 코팅 설계 및 특성)

  • Ki, Hyun-Chul;Yang, Mung-Hark;Kim, Seon-Hoon;Kim, Tea-Un;Kim, Hwe-Jong;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.991-994
    • /
    • 2007
  • In this paper, we have designed the anti-reflection(AR) coating for $1400{\sim}1600$ nm wavelength range on the ferrule facet of optical connector. The low-temperature ion-assisted deposition was applied to AR coating on the ferrule facet in order to avoid damage of optical connector. We have measured the refractive index of coating film($Ta_2O_5\;and\;SiO_2$) using the ellipsometer and optimized the film thickness using the SEM and thickness measurement equipment. UV-VIS-NIR spectrophotometer is used to measure transmissivity of the AR coated ferrule facet. The refractive index of $Ta_2O_5\;and\;SiO_2$ is $2.123{\sim}2.125$ and $1.44{\sim}1.442$, respectively, for $1400{\sim}1600$ nm wavelength range. The transmissivity of the AR coated ferule facet is more than 99.8 % for $1425{\sim}1575$ nm wavelength range and more than 99.5 % for $1400{\sim}1600$ nm wavelength range. The return loss of the AR coated ferrule facet is 30.1 dB.

Luminescent Properties of $SrTiO_3:Pr^{3+}$ Phosphor Coated with $SiO_2$ and $Al_2O_3$ by Sol-Gel Method (졸-겔법에 의한 $SrTiO_3:Pr^{3+}$ 형광체의 $SiO_2$$Al_2O_3$ 코팅에 따른 발광특성)

  • Lee, Dong-Kyu;Lim, Mun-Hyuk;Lee, Jin-Hwa;Kim, Tae-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2006
  • Field emission display(FED) is actively investigated in view of the development of full color flat-panel display, which can replace some cathode-ray tube(CRT). Thus, the development of new phosphors appropriate for FED is urgently needed and has been actively investigated. In this work, $SrTiO_3:Pr^{3+}$ phosphor was prepared by sol-gel method and the coating was applied by sol-gel method combined with sonication on these phosphor's surface into diluted precursor solution. It was found that very fine particles of coating material were formed on phosphor's surface. The luminescent intensity of $SrTiO_3:Pr^{3+}$ phosphor coated with $SiO_2$ and $Al_2O_3$ was considerably increased without any noticeable change in color chromaticity. The optimum concentration of coating material was found to be 1wt% and the optimum pH value of the solution was 10.

Surface Coating of SiO2 on TiO2-natural Zeolite Composite Particles and Its Characterization (실리카 코팅된 TiO2-천연 제올라이트 복합입자 제조와 특성평가)

  • Lim, Hyung-Mi;Jung, Ji-Sook;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.692-697
    • /
    • 2006
  • Deodorization of natural zeolites have been improved not only for polar but also for non-polar pollutants by sucessive ion exchanges of H and Ag ions starting from Korean natural zeolite with high adsorption capacity. The modified zeolites with $TiO_2$ coating on the surface revealed high deodorization and photocatalytic decomposition effects. Further modification was made with $10{\sim}20nm$ silica nano particles coating on the surface, the resulting composite particles of $SiO_2/TiO_2/modified$ natural zeolite revealed not only comparable deodorization but also better durability and resisatnce to color change compared to the $TiO_2$/modified natural zeolite without much compensation of photocatalytic decomposition effect, when the composite particles were exposed to the polypropylene non-woven fiber coated with organic binder. It is expected for the composite particle prepared here to be used as indoor building materials for indoor air quality control.

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure (LiFePO4/C의 carbon coating 방법 및 다공성 구조 형성에 의한 전기화학적 특성 개선)

  • Kong, Ki Chun;Ju, Jeh Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.