• Title/Summary/Keyword: $Sb_2Te_3$

Search Result 162, Processing Time 0.017 seconds

129 GHz SIS MIXER RECEIVER FOR KOREAN VLBI NETWORK (한국우주전파관측망 129 GHz 초전도 믹서 수신기)

  • Lee, Jung-Won;Wang, Ming-Jye;Li, Chao-Te;Chen, Tse-Jun;Kim, Soo-Yeon;Lu, Wei-Chun;Kang, Yong-Woo;Shi, Sheng-Cai;Han, Seog-Tae
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.71-80
    • /
    • 2012
  • We have developed superconducting mixer receivers for 129 GHz VLBI observation in Korean VLBI Network (KVN). The developed mixer has a radial waveguide probe with simple transmission line L-C transformer as a tuning circuit to its 5 series-connected junctions, which can have 125 - 165 GHz as the operation radio frequency (RF). For intermediate frequency (IF) signal path a high impedance quarter-wavelength line connects the probe to one end of symmetric RF chokes. The double side band (DSB) receiver noise of the mixer was about 40 K over 4 - 6 GHz IF band, whereas we achieved the uncorrected single side band (SSB) noise temperature of about 70 K and better than 10 dB image rejection ratio in 2SB configuration with 8 - 10 GHz IF band. Insert-type receiver cartridges employing the mixers have been under commission for KVN stations.

DEVELOPMENT OF AN ASTRONOMICAL INFRARED PtSi CAMERA (천문관측용 PtSi 전하결합소자 적외선 카메라의 개발)

  • Hong, Seung-Su;;Gu, Bon-Cheol;Kim, Kwang-Tae;Kim, Chil-Yeong;Oh, Gap-Su;Lee, Myeong-Gyun;Lee, Hyeong-Mok;Kang, Yong-Woo;Park, Won-Gi
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • We have built a near-infrared imaging camera with a PtSi array detector manufactured by the Mitsubishi Company. The PtSi detector is sensitive in the wavelength range 1 to $5{\mu}m$. Quantum efficiency of PtSi is much lower than that of InSb and HgCdTe types. However, the PtSi array has advantages over the latter ones: (i)The read-out noise is very low; (ii)the characteristics of the array elements arc uniform and stable; (iii)it is not difficult to make a large PtSi array; and (iv) consequently the price is affordably low. The array used consists of $512{\times}512$ pixels and its size is $10.2\;mm{\times}13.3\;mm$. The filter wheel of the camera is equipped with J, H, K filters, and an aluminum plate for measuring the dark noise. The dewar is cooled with liquid nitrogen. We have adopted a method of installing the clock pattern and the observing softwares in the RAM, which Gill he easily used for other systems. We have developed a software with a pull-down menu for operating the camera and data acquisition. The camera has been tested by observing $\delta$ Orionis.

  • PDF