• Title/Summary/Keyword: $S_N'$ Reactions

Search Result 384, Processing Time 0.023 seconds

Studies on the Reaction of 2-Phenylethyl Arenesulfonates with Pyridine under High Pressure (2-Phenylethyl Arenesulfonates와 피리딘과의 고압반응에 관한 연구)

  • Yoh Soo Dong;Park, Jong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.383-388
    • /
    • 1986
  • Kinetics of the reaction of 2-phenylethylarenesulfonates with pyridine in acetonitrile were investigated by an electric conductivity method under 1 to 2,000 bars and at 40∼60${\circ}C$. The rates of these reactions were increased with raising temperatures and pressures, but less than those of the reactions of benzyl benzenesulfonate with pyridine in acetoneitrile were investigated by an electric conductivity method under 1 to 2,000 bars and at 40~60${\circ}C$ .The rates of these reactions were increased with raising temperatures and pressures, but less than those of the reaction of benzyl benzenesulfonate with pyridine in acetone. The activation volumes and activation entropies of 2-phenylethyl m-nosylate were more negatively large than those of benzyl benzenesulfonate. From these phenomena it can be deduced that 2-phenylethyl system has more firmly $S_N2$ character in tranistion state. The Hammett reaction constants are also estimated from the second-order reaction constants. With increasing pressures the reaction parameters $({\rho})$ were decreased, but the $S_N2$ characters were increased. From these results, the reaction mechanism can be adequately described as typical $S_N2$ process under high pressure.

  • PDF

A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism

  • Ahn, Jung-Ae;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.214-218
    • /
    • 2009
  • Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature, i.e., $\beta_{nuc}$ decreases from 0.94 to 0.34 as the amine basicity increases. The reactions in the aqueous DMSO have also been suggested to proceed through a zwitterionic tetrahedral intermediate (T${\pm}$) with change in the RDS on the basis of the curved Br$\phi$nsted-type plot. The reactions in the aqueous DMSO exhibit larger $k_N$ values than those in the aqueous EtOH. The macroscopic rate constants ($k_N$) for the reactions in the two solvent systems have been dissected into the microscopic rate constants ($k_1\;and\;k_2/k_{-1}$ ratio) to investigate effect of medium on reactivity in the microscopic level. It has been found that the $k_2/k_{-1}$ ratios are similar for the reactions in the two solvent systems, while $k_1$ values are larger for the reactions in 20 mol % DMSO than for those in 44 wt % EtOH, indicating that the larger $k_1$ is mainly responsible for the larger $k_N$. It has been suggested that the transition state is more stabilized in 20 mol % DMSO through mutual polarizability interaction than in 44 wt % EtOH through H-bonding interaction.

A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows (화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발)

  • Chung C. H.;Yoon S. J.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

Extended Huckel Calculations of the Effect of Sulfenyl, Sulfinyl and Sulfonyl Groups on the Reactivity of Halides in $S-N2$ Reactions (할라이드의 $S_N2$ 형 반응성에 미치는 술페닐, 술피닐 및 술포닐기의 효과에 대한 확장 Huckel 계산)

  • Ui Rak Kim;Kyu Yong Lee;Sun Ho Bai;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.3-7
    • /
    • 1974
  • Extended Huckel calculations have been carried out to study the effect of sulfenyl, sulfinyl and sulfonyl groups on the reactivity of halides in $S-N2$ reactions. Results indicate that the most reasonable reactivity index is that based on the Frontier electron for the bond formation process.

  • PDF

Intrinsic and Thermodynamic Effects on the Structure and Energy of the S$_N$2 Transition State$^*$

  • Lee, Ik-Choon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.448-453
    • /
    • 1986
  • Two contributions to the activation barrier of the $S_N2$ reaction, intrinsic and thermodynamic, are discussed in connection with the predictive power of various rate-equilibrium relationships. It has been shown that the PES models can only give correct predictions of changes in structure and energy of the transition state if the activation barrier is dictated by the thermodynamic factor. We concluded that the identity and dissociative $S_N2$ reactions are dominated by the intrinsic component while associative $S_N2$ reactions are predominantly of thermodynamic controlled. Thus in the former cases, the PES models fail, whereas in the latter cases predictions based on the intrinsic factor, the quantum mechanical models, fail. Finally in a general case of equal contributions by thermodynamic and intrinsic factors, the $SN_2$ reaction proceeds by a synchronous process with zero net charge on the reaction center, for which predictions of substituent effects will be the same as for the intrinsic control case.

Extrathermodynamic Relationships for the Nucleophilic Addition Reaction of Mercaptan to a Carbon Double Bond (炭素二重結合에 대한 Mercaptan의 친핵성 첨가 반응의 Extrathermodynamic Relationship에 관한 연구)

  • OK-HYUN PARK;TAE-SUP UHN
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.297-302
    • /
    • 1969
  • The activation parameters for the nucleophilic addition reactions of n-propyl-, n-butyl-, n-amyl-and n-hexyl-mercaptan to 3, 4-methylene-dioxy-${\beta}$-nitrostyrene were determined at pH 5.8 and pH 2.0, and also the isokinetic temperature of the reactions at pH 5.8 was obtained numerically 262${\circ}$K, and at pH 2.0, 17.1${\circ}$K. From the values obtained above, the fact that the mercaptan having the longer carbon chain has the greater nucleophilicity of it in the addition reactions has been discussed by the extrathermodynamic analysis of ${\Delta}H^{\neq}$and ${\Delta}S^{\neq}$.

  • PDF

Kinetics Studies on the Mechanism of Hydrolysis of S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives

  • Pyun, Sang-Yong;Kim, Tae-Rin;Lee, Chong-Ryoul;Kim, Whan-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.306-310
    • /
    • 2003
  • Hydrolysis reactions of S-phenyl-S-vinyl-N-p-tosylsulfilimine (VSI) and its derivatives at various pH have been investigated kinetically. The hydrolysis reactions produced phenylvinylsulfoxide and p-toluene sulfonamide as the products. The reactions are first order and Hammett ρ values for pH 1.0, 6.0, and 11.0 are 0.82, 0.45, and 0.57, respectively. This reaction is not catalyzed by general base. The plot of k vs pH shows that there are three different regions of the rate constants $(k_t)$ in the profile.; At pH < 2 and pH > 10, the rate constants are directly proportional to the concentrations of hydronium and hydroxide ion catalyzed reactions, respectively. The rate constant remains nearly the same at 2 < pH < 10. On the bases of these results, the plausible hydrolysis mechanism and a rate equation have been proposed: At pH < 2.0, the reaction proceeds via the addition of water molecule to sulfur after protonation at the nitrogen atom of the sulfilimine, whereas at pH > 10.0, the reaction proceeds by the addition of hydroxide ion to sulfur directly. In the range of pH 2.0-10.0, the addition of water to sulfur of sulfilimine appears to be the rate controlling step.

Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism

  • Um, Ik-Hwan;Son, Min-Ji;Kim, Song-I;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1915-1919
    • /
    • 2010
  • Second-order rate constants $(k_N)$ have been measured for reactions of 2,4-dinitrophenyl phenyl carbonate (2) with a series of pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ and compared with the $k_N$ values reported for the corresponding reactions of 2,4-dinitrophenyl benzoate (1) to investigate the effect of nonleaving group on reactivity and mechanism. The reactions of 2 result in larger $k_N$ values than those of 1. The Br${\o}$nsted-type plot for the reactions of 2 exhibits a downward curvature (i.e., ${\beta}2$ = 0.84 and ${\beta}1$ = 0.16), which is typical for reactions reported to proceed through a stepwise mechanism with a change in rate-determining step. The $pK_a$ at the center of the Br${\o}$nsted curvature, defined as $pK_a{^{\circ}}$, has been found to be 8.5 and 9.5 for the reactions of 2 and 1, respectively. Dissection of $k_N$ into the microscopic rate constants (e.g., $k_1$ and $k_2/k_{-1}$ ratio) has revealed that the reactions of 2 result in larger k1 values than those of 1, indicating that PhO behaves as a stronger electron-withdrawing group than Ph. However, the $k_2/k_{-1}$ ratio has been found to be independent of the electronic nature of Ph and PhO.

Effects of Ion and Protic Solvent on Nucleophilic Aromatic Substitution (SNAr) Reactions

  • Park, Sung-Woo;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2571-2574
    • /
    • 2010
  • We investigate the mechanism of $S_NAr$ fluorination reactions under the influence of protic solvents and ions. We find that counterion or protic solvent alone retards the $S_NAr$ reactions, but together they may promote the reaction. In this mechanism, the protic solvent acts on the counterion as a Lewis base, and the nucleophile reacts as an ion pair. We also show that an anion (mesylate) may exhibit catalytic effects, suggesting the role of ionic liquids for accelerating the $S_NAr$ reactions.

Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

  • Zhang, Xing-Hui;Wang, Ke-Tai;Niu, Teng;Li, Shan-Shan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1403-1408
    • /
    • 2014
  • The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.