• Title/Summary/Keyword: $SUV_{max}$

Search Result 71, Processing Time 0.04 seconds

The Differentiation of Malignant and Benign Musculoskeletal Tumors by F-18 FDG PET/CT Studies - Determination of maxSUV by Analysis of ROC Curve (F-18 FDG PET/CT에서 양성과 악성 근골격 종양의 감별진단 - 수신자 판단특성곡선을 이용한 maxSUV의 절단값 결정)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Choi, Jun-Heok;Shin, Duk-Seop
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.6
    • /
    • pp.553-560
    • /
    • 2007
  • Purpose: We evaluated the standard uptake value (SUV) of F-18 FDG at PET/CT for differentiation of benign from malignant tumor in primary musculoskeletal tumors. Materials and Methods: Forty-six tumors (11 benign and 12 malignant soft tissue tumors, 9 benign and 14 malignant bone tumors) were examined with F-18 FDG PET/CT (Discovery ST, GE) prior to tissue diagnosis. The maxSUV(maximum value of SUV) were calculated and compared between benign and malignant lesions. The lesion analysis was based on the transverse whole body image. The maxSUV with cutoff of 4.1 was used in distinguishing benign from malignant soft tissue tumor and 3.05 was used in bone tumor by ROC curve. Results: There was a statistically significant difference in maxSUV between benign (n=11; maxSUV $3.4{\pm}3.2$) and malignant (n=12; maxSUV $14.8{\pm}12.2$) lesions in soft tissue tumor (p=0.001). Between benign bone tumor (n=9; maxSUV $5.4{\pm}4.0$) and malignant bone tumor (n=14; maxSUV $7.3{\pm}3.2$), there was not a significant difference in maxSUV. The sensitivity and specificity for differentiating malignant from benign soft tissue tumor was 83% and 91%, respectively. There were four false positive malignant bone tumor cases to include fibrous dysplasia, Langerhans-cell histiocytosis (n=2) and osteoid osteoma. Also, one false positive case of malignant soft tissue tumor was nodular fasciitis. Conclusion: The maxSUV was useful for differentiation of benign from malignant lesion in primary soft tissue tumors. In bone tumor, the low maxSUV correlated well with benign lesions but high maxSUV did not always mean malignancy.

Evaluate Utility of Thyroid Cancer Discrimination by 18F-FDG PET/CT Delay Scan Images (18F-FDG PET/CT검사에서 지연영상을 이용한 갑상선암 진단의 유용성 평가)

  • Lee, Hyeon-Guck;Han, Man-Seok;Kim, Yong-Kyun;Seo, Sun-Youl;Jeon, Min-Cheol;Kim, Tae-Hyung;Hong, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2958-2965
    • /
    • 2013
  • Purpose : To evaluate the degree of malignancy of incident thyroid lesion found in 18F-FDG PET/CT findings and the usefulness of the method suggested in this study, we applicate the Delay Scan Method that differentiate a false positive benign tumor, inflammation and malignancy, as well as make the criteria of SUV. Materials and Methods : A retrograde study was conducted of 25 patients(1 exception) who were admitted in E hospital to receive 18F-FDG PET/CT examination until Janaary and April of 2008. 18F-FDG PET/CT image photographing was taken in Biograph-Duo made by SIEMENS, after taking normal 18F-FDG PET/CT image(1hr) and then 1hr later we took the thyroid 1 bed-delayed image for the patients who showed abnormal thyroid 18F-FDG uptake and above 2.0 SUV for 2 minutes every 1 bed. For the patients who showed abnormal thyroid uptake and above 2.0 SUV, 1hr later, we took a 1 bed-delayed image and then made a comparative study between measured maxSUV of 1hr-abnormal uptake image and that of 2hr-delayed image. Results : In this 18F-FDG PET/CT study among the patients who showed incidental 18F-FDG thyroidal uptake the number of thyroid cancer was 5(20.8%), all of then showed benign findings. a comparison of results for 18F-FDG PET/CT. the benign patient measured maxSUV in the PET/CT. image(1hr) mean value 5.06maxSUV and delay image(2hr) mean value 5.23maxSUV differences of two value is 0.19maxSUV and the malignantIt patient measured maxSUV in the PET/CT. image(1hr) mean value 9.63maxSUV and delay image(2hr) mean value 10.65maxSUV differences of two value is 10.65maxSUV in Thyroid abnormal uptake patients. Conclusion : in the case of incidental 18F-FDG uptake in thyroid, max SUV of focal thyroid lesion is above 5.0 if 18F-FDG PET/CT examine the delayed images to add, You could see that reasonable diagnostic method useful. to differentiate whether lesions of malignant.

Evaluation of Standardized Uptake Value and Metabolic Tumor Volume between Reconstructed data and Re-sliced data in PET Study (PET 검사 시 Reconstructed data와 Re-sliced data의 표준섭취계수와 Metabolic Tumor Volume의 비교 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.3-8
    • /
    • 2016
  • Purpose SUV is one of the parameters that assist diagnosis in origin, metastasis and staging of cancer. Specially, it is important to compare SUV before and after chemo or radiation therapy to find out effectiveness of treatment. Storing PET data which has no quantitative change is needed for SUV comparison. However, there is a possibility to loss the data in external hard drive or MINIpacs that are managed by department of nuclear medicine. The aim of this study is to evaluate SUV and metabolic tumor volume (MTV) among reconstructed data (R-D) in workstation, R-D and re-sliced data (S-D) in PACS. Materials and Methods Data of 20 patients (aged $60.5{\pm}8.3y$) underwent $^{18}F-FDG$ PET (Biograph truepoint 40, mCT 40, mCT 64, mMR, Siemens) study were analysed. $SUV_{max}$, $SUV_{peak}$ and MTV were measured in liver, aorta and tumor after sending R-D in workstation, R-D and S-D in PACS to syngo.via software. Results R-D of workstation and PACS showed the same value as mean $SUV_{max}$ in liver, aorta and tumor were $2.95{\pm}0.59$, $2.35{\pm}0.61$, $10.36{\pm}6.15$ and $SUV_{peak}$ were $2.70{\pm}0.51$, $2.07{\pm}0.43$, $7.67{\pm}3.73$(p>0.05) respectively. Mean $SUV_{max}$ of S-D in PACS were decreased by 5.18%, 7.22%, 12.11% and $SUV_{peak}$ 2.61%, 3.63%, 10.07%(p<0.05). Correlation between R-D and S-D were $SUV_{max}$ 0.99, 0.96, 0.99 and $SUV_{peak}$ 0.99, 0.99, 0.99. And 2SD in balnd-altman analysis were $SUV_{max}$ 0.125, 0.290, 1.864 and $SUV_{peak}$ 0.053, 0.103, 0.826. MTV of R-D in workstation and PACS show the same value as $14.21{\pm}12.72cm^3$(p>0.05). MTV in PACS was decreased by 0.12% compared to R-D(p>0.05). Correlation and 2SD between R-D and S-D were 0.99 and 2.243. Conclusion $SUV_{max}$, $SUV_{peak}$, MTV showed the same value in both of R-D in workstation and PACS. However, there was statistically difference in $SUV_{max}$, $SUV_{peak}$ of S-D compare to R-D despite of high correlation. It is possible to analyse reliable pre and post SUV if storing R-D in main hospital PACS system.

  • PDF

Comparing the Change in SUVmax Over Time by the Type of Ductal Breast Carcinoma (유방암 환자 중 유관에서 발병되는 암의 종류(IDC와 DCIS)별 시간경과에 따른 SUVmax 변화에 대한 비교)

  • Hyoung, Mi-Jin;Kim, Jeong Nip;Moon, Pyeong Soo;Kim, Kil Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.140-144
    • /
    • 2014
  • Purpose: The recent surge in breast carcinoma patients is reported in a variety of statistics. Breast cancer occurs mainly from duct and lobulus: 85% is from the breast ducts. The present study is aimed to distinguish the difference in $SUV_{max}$ changing over time by identifying the type of cancers attacking from the duct. Materials and Methods: The subjects of the study are 291 female breast cancer patients who have visited the present PET/CT center from July 1, 2012 to July 23, 2013. Based on the pathological results, 248 IDC (invasive ductal carcinoma) patients and 43 DCIS (ductal carcinoma in situ) patients were selected. In the same manner as the general PET/CT scan (3.7 MBq/Kg), F-FDG was injected, followed by the primary test (Routine tests) after 1 hr, and the secondary test (Delay test) after another hr. $SUV_{max}$ was measured after setting ROI in the lesion based on the data from the two tests. Results: As the comparative result of the change in the lesion $SUV_{max}$ between the two groups, IDC group's $SUV_{max}$ showed M=7.11 and SD=5.405 in the primary test and increased M=7.11 and SD=5.405 in the secondary test (P<0.05); DCIS group's $SUV_{max}$ showed M=2.739, SD=1.229 in the primary test and increased M=2.614, SD=1.470 in the secondary test (P<0.05). Conclusion: As the comparative result of $SUV_{max}$ over time between the groups, IDC showed increased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.000); DCIS showed decreased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.039). It was confirmed through this study that the change in $SUV_{max}$ has occurred over time by the type of breast cancer (IDC or DCIS) occurring from the breast ducts. However, the onset of breast cancers (ILC, LCIS) from the lobulus was not discussed due to the lack of samples. Future research on the breast cancers from the lobulus is suggested.

  • PDF

The Preoperative Diagnosis of Thyroid Cancer in $^{18}F$-FDG PET/CT Dual Time Imaging of SUV and Evaluation of Radioactivity Measurement (갑상선암 수술 전 진단목적의 $^{18}F$-FDG PET/CT Dual Time Point영상에서 SUV값과 방사능 농도 측정법의 유용성 평가)

  • Lee, Hyun-Kuk;Khang, Hyun Soo;Yang, Seoung-Oh;Han, Man-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • Purpose : This study is designed to compare two parameters reflecting $^{18}F$-FDG uptake, SUV and radioactivity, for diagnosis of thyroid cancer in dual time $^{18}F$-FDG PET/CT imaging and to find which parameter is more useful to decide whether the tumor is malignant or not. Materials and Methods : We performed retrospective study for 40 patients. All patients are diagnosed as primary thyroid cancer and examined $^{18}F$-FDG PET/CT. First, we got the dispersion of scattering beam of neck and lung apex to set a background and compared each dispersion, mean value, standard deviation of maxSUV and radioactivity. Also, mean maxSUV, ${\Delta}maxSUV$, ${\Delta}maxBq$/ml(%) and radioactivity between groups according to lesion's size based on biopsy are compared with independent-sample t-test. Results : the values that were from maxSUV and radioactivity measurement technique were compensated and calculated to practical values for mean comparison and patients were divided to two groups based on tumor size, Group1 ($size{\leq}1$ cm, n=21), Group2 (size>1 cm, n=19) for accurate comparison. In Group1, maxSUV (semi-quantitative analysis) was increased from $5.64{\pm}5.85$ (1.89~17.84) at first image to $5.90{\pm}5.01$ (1.95~18.22) at second image and radioactivity (Bq/ml) (quantitative analysis) showed similar increase from $5.93{\pm}6.38$ (2.50~16.75) at first image to $6.01{\pm}5.25$ (2.66~16.58) at second image. In Group2, TFmaxSUV was $10.54{\pm}14.36$ (2.54~33.89) in true first image, TSmaxSUV was $9.85{\pm}12.88$ (2.62~26.20) in true second image separately. The maxSUV showed a significant difference in the mean comparison between the two groups (p=0.035) But, mean radioactivity (Bq/ml) was $5.93{\pm}6.38$ (4.81~40.99) in true first image, $6.01{\pm}5.25$ (4.51~36.93) in true second image and didn't show a significant difference statistically (p=0.126) Conclusion : In diagnosis of thyroid tumor, SUV and radioactivity depending on $^{18}F$-FDG uptake showed high similarity with coefficient of determination (R2=0.939) and malignant evaluation results using dual time also showed similar aspect. Radioactivity for evaluation of malignant tumor didn't show better specificity or sensitivity than maxSUV.

  • PDF

The Evaluation of the Difference of the SUV Caused by DFOV Change in PET/CT (PET/CT 검사에서 확대된 표시시야가 표준섭취계수에 미치는 영향 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2011
  • Purpose: The limited FOV(Field of View) of CT (Computed Tomography) can cause truncation artifact at external DFOV (Display Field of View) in PET/CT image. In our study, we measured the difference of SUV and compared the influence affecting to the image reconstructed with the extended DFOV. Materials and Methods: NEMA 1994 PET Phantom was filled with $^{18}F$(FDG) of 5.3 kBq/mL and placed at the center of FOV. Phantom images were acquired through emission scan. Shift the phantom's location to the external edge of DFOV and images were acquired with same method. All of acquired data through each experiment were reconstructed with same method, DFOV was applied 50 cm and 70 cm respectively. Then ROI was set up on the emission image, performed the comparative analysis SUV. In the clinical test, patient group shown truncation artifact was selected. ROI was set up at the liver of patient's image and performed the comparative analysis SUV according to the change of DFOV. Results: The pixel size was increase from 3.91 mm to 5.47 mm according to the DFOV increment in the centered location phantom study. When extended DFOV was applied, $_{max}SUV$ of ROI was decreased from 1.49 to 1.35. In case of shifted the center of phantom location study, $_{max}SUV$ was decreased from 1.30 to 1.20. The $_{max}SUV$ was 1.51 at the truncated region in the extended DFOV. The difference of the $_{max}SUV$ was 25.9% higher at the outside of the truncated region than inside. When the extended DFOV was applied, $_{max}SUV$ was decreased from 3.38 to 3.13. Conclusion: When the extended DFOV was applied, $_{max}SUV$ decreasing phenomenon can cause pixel to pixel noise by increasing of pixel size. In this reason, $_{max}SUV$ was underestimated. Therefore, We should consider the underestimation of quantitative result in the whole image plane in case of patient study applied extended DFOV protocol. Consequently, the result of the quantitative analysis may show more higher than inside at the truncated region.

  • PDF

Analysis for Correlation of Standardized Uptake Value in Fusion Imaging Scanner (융합영상장비의 표준섭취계수 상관관계 분석)

  • Kim, Jin-Eui;Kim, Jung-Soo;Choi, Nam-Gil;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.593-601
    • /
    • 2018
  • Recently in nuclear medicine, to improve diagnostic value, SUV, semi-quantitative indicator used in PET-CT, is adopted in SPECT-CT. Therefore, this research analyzed correlation of $SUV_{max}$ of two scanners through phantom test, and evaluated possibility of clinical application. Radiopharmaceuticals ($^{18}F$, $^{99m}Tc$) were injected with the ratios of 8:1 and 4:1, considering background radioactivity, into the phantom manufactured with 6 globes of different sizes, and, based on clinical protocol, positive phases were acquired with PET-CT and SPECT-CT scanners, and interesting areas were divided into ROI and VOI, and $SUV_{max}$ of them were measured, and analyzed. Tests found out no statistically significant difference in $SUV_{max}$ measured with two scanners (P>0.05). Thus, $SUV_{max}$ of PET-CT and SPECT-CT had a certain correlation within significant levels, and were evaluated as the same. Accordingly, it seems that $SUV_{max}$ quantitative analysis using SPECT-CT can provide significant diagnostic information as the case of PET-CT.

The Effect of Intravenous Contrast on SUV Value in $^{18}F$-FDG PET/CT using Diagnostic High Energy CT (진단용 고선량 CT를 이용한 $^{18}F$-FDG PET/CT 촬영시 정맥 조영제가 SUV 값에 미치는 영향)

  • Jeong, Young-Jin;Kang, Do-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.169-176
    • /
    • 2006
  • Purpose: According to the development of CT scanner in PET/CT system, the role of CT unit as a diagnostic tool has been more important. To improve the diagnostic ability of CT scanner, it is a key aspect that CT scanning has to be performed with high dose energy and intravenous (IV) contrast. So we investigated the effect of IV contrast media on the maximum SUV (maxSUV) of normal tissues and pathologic lesions using PET/CT scanner with high dose CT scanning. Materials & Methods: The study enrolled 13 patients who required PET/CT evaluation. At first, the patients were performed whole body non-contrast CT (NCCT-120 kVp, 130 mAs) scan. Then contrast enhanced CT (CECT) scan was performed immediately. Finally PET scan was followed. The PET omission data were reconstructed twice, once with the NCCT and again with the CECT. We measured the maxSUV of 10 different body regions that were considered as normal in ail patients. Also pathologic lesions were investigated. Results: There were not seen focal artifacts in PET images based on CT with IV contrast agent. Firstly, 130 normal regions in 13 patients were evaluated. The maxSUV was significantly different between two PET images (p<0.00)). The maxSUV was $1.1{\pm}0.5$ in PET images with CECT-corrected attenuation and $1.0{\pm}0.5$ in PET images with NCCI-corrected attenuation. The limit of agreement was $0.1{\pm}0.3$ in Bland-Altman analysis. Especially there were significant differences in 6 of 10 regions, apex and base of the right lung, ascending aorta, segment 6 & segment 8 of the liver and spleen (p<0.05). Secondly, 39 pathologic lesions were evaluated. The maxSUV was significantly different between two PET images (p<0.001). The maxSUV was $4.7{\pm}2.0$ in PET images with CECT-corrected attenuation and $4.4{\pm}2.0$ in PET images with NCCT-corrected attenuation. The limit of agreement was $0.4{\pm}0.8$ in Bland-Altman analysis. Conclusion: Although there were increases of maxSUVs in the PET images based on CT with IV contrast agent, it was very narrow in the range of limit of agreement. So there was no significant effect to clinical interpretation for PET images that were corrected attenuation with high dose CT using IV contrast.

Evaluation of Average CT to Reduce the Artifact in PET/CT (PET/CT 검사에서 호흡에 따른 인공산물을 줄이기 위한 Average CT의 유용성)

  • Kim, Jung-Sun;Nam, Ki-Pyo;Park, Seung-Yong;Ryu, Jae-Kwang;Cha, Min-Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • Purpose: The usefulness of Positron Emission Tomography (PET) images in diagnosis, staging, recurrent and treatment response evaluation has already been known. However, tumors which are small size, located in lower lobe of lung or upper lobe of liver are shown misalignment, distortion and different Standard Uptake Value (SUV) by respiration in PET images. Therefore, if radiotherapy based on normal respiration, it may cause low treatment response or more side effects because targets which had to treat, out of treat range or over dose to normal tissue. The purpose of this study is to evaluate attenuation-correction with Average CT (ACT) for more accuracy SUV measurement and minimize artifact by respiration. Materials and Methods: 13 patients, who had tumors which are around the diaphragm, underwent ACT scan after Helical CT (HCT) scan with PET/CT (Discovery DSTE 8; GE Healthcare). We quantified the differences between attenuation corrected image with HCT and attenuation corrected image with ACT in artifact size and maximum SUV ($SUV_{max}$). Artifacts were evaluated by measurement of the curved photogenic area in the lower thorax of the PET images for all patients. $SUV_{max}$ was measured separately at the primary tumors. Analysis program was Advantage Workstation v4.3 (GE Healthcare). Patients were injected with 7.4 MBq (0.2 $mC_i$) per kg of $^{18}F$-FDG and scanned 1 hour after injection. The PET acquisition was 3 minute per bed. Results: Significantly lower artifact were observed in PET/ACT images than in PET/HCT images (below-thoracic artifacts caused by under corrected $1.5{\pm}3.5$ cm vs. $13.4{\pm}4.2$ cm). Significantly higher $SUV_{max}$ were noted in PET/ACT images than in PET/HCT images in the primary tumor. Compared with PET/HCT images, $SUV_{max}$ in PET/ACT images were higher by $5.3{\pm}3.9%$ (mean value) tumor. The highest difference was observed in Lower lobe of lung (7.7 to 8.7; 13%). Conclusion: Due to its significantly reduced artifacts in lower thoracic, attenuation corrected image with ACT images provided more reliable $SUV_{max}$ and may be helpful in monitoring treatment response. Moreover, ACT can separate upper lobe of liver and lower lobe of lung, it may be helpful in interpretation. ACT will be clinically useful, considering increased dose caused by ACT scan and adapt.

  • PDF

Prognostic Usefulness of Maximum Standardized Uptake Value on FDG-PET in Surgically Resected Non-small-cell Lung Cancer (수술로 제거된 비소세포폐암의 예후 예측에 있어 FDG-PET 최대 표준화 섭취계수의 유용성)

  • Nguyen Xuan Canh;Lee Won-Woo;Sung Sook-Whan;Jheon Sang-Hoon;Kim Yu-Kyeong;Lee Dong-Soo;Chung June-Key;Lee Myung-Chul;Kim Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.205-210
    • /
    • 2006
  • Purpose: FDG uptake on positron omission tomography (PET) has been considered a prognostic indicator in non-small cell lung cancer (NSCLC). The aim of this study was to assess the clinical significance of maximum value of SUV (maxSUV) in recurrence prediction in patients with surgically resected NSCLC. Materials & methods: NSCLC patients (n=42, F:M =14:28, age $62.3{\pm}12.3$ y) who underwent curative resection after FDG-PET were enrolled. Twenty-nine patients had pathologic stage 1, and 13 had pathologic stage II. Thirty-one patients were additionally treated with adjuvant oral chemotherapy. MaxSUVs of primary tumors were analyzed for correlation with tumor recurrence and compared with pathologic or clinical prognostic indicators. The median follow-up duration was 16 mo (range, 3-26 mo). Results: Ten (23.8%) of the 42 patients experienced recurrence during a median follow-up of 7.5 mo (range, 3-13 mo). Univariate analysis revealed that disease-free survival (DFS) was significantly correlated with maxSUV (<7 vs. $\geq7$, p=0.006), tumor size (<3 cm vs. $\geq3$ cm, p=0.024), and tumor tell differentiation (well/moderate vs. poor, p=0.044). However, multivariate Cox proportional analysis identified maxSUV as the single determinant for DFS (p=0.014). Patients with a maxSUV of $\geq7$(n=10) had a significantly lower 1-year DFS rate (50.0%) than those with a maxSUV of <7 (n=32, 87.5%). Conclusion: MaxSUV is a significant independent predictor for recurrence in surgically resected NSCLC. FDG uptake can be added to other well-known factors in prognosis prediction of NSCLC.