• Title/Summary/Keyword: $SO_2$ treatment concentrations

Search Result 250, Processing Time 0.031 seconds

Effect of SCODMn and pH Adjustment on Physicochemical Characteristics in Liquid Fertilizer Production Process Using Swine Manure (SCODMn 농도 및 pH 조정이 양돈분뇨의 후숙발효과정에 미치는 이화학적 영향)

  • Hong, In-Gi;Kim, Soo-Ryang;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.13-20
    • /
    • 2012
  • This research investigated the effect of $SCOD_{Mn}$ concentrations and pH adjustment at the stage before land application, namely 2nd-aeration treatment stage of liquid fertilizer in the liquid fertilizer treatment process of swine manure on the physicochemical compositions of 2nd-aeration treated liquid fertilizer. The liquid fertilizer used in this research is the alkaline fermented liquid fertilizer of swine manure more than pH 9.0 through aeration treatment (Alkaline fermentation treatment group). About the alkaline liquid fertilizer, phosphate neutralization treatment was conducted with phosphoric acid and it was a phosphate neutralization treatment group. In 2nd-aeration treatment of liquid fertilizer for 30 days, each group was divided into alkaline treatment groups (T-1, T-2, and T-3) and phosphate neutralization treatment groups (T-4, T-5, and T-6) according to early $SCOD_{Mn}$ concentrations. The research results are as follows. 1. As for $SCOD_{Mn}$ reduction rate, the average 29.9% in alkaline treatment groups and the average 36.9% in phosphate neutralization treatment groups were shown and so the relatively high reduction rate was shown in phosphate neutralization treatment groups. 2. After finishing the experiment, the group of the lowest $SCOD_{Mn}$ concentrations was the phosphate neutralization treatment group, T-6 with the lowest inflow concentrations. In case the final goal level of 2nd-aeration treated liquid fertilizer is assumed as concentrations less than $SCOD_{Mn}$ 3,000 ppm, it would be desired that inflow concentrations of 2nd-aeration treatment groups are adjusted less than $SCOD_{Mn}$ 5,500 ppm. 3. As for the persistence rate of nitrogen, the average 29.3% in alkaline treatment groups and the average 38.9% in phosphate neutralization treatment groups were shown and so phosphate neutralization treatment groups showed the relatively low loss rate of nitrogen, meanwhile, in the case of T-P, phosphate neutralization treatment groups maintained high concentrations (average 1,473 ppm). 4. In the event of 2nd-aeration treatment of liquid fertilizer, "alkaline fermentation treatment" condition in 'low phosphate-low nitrogen' type and "phosphate neutralization treatment" condition in 'high phosphate-high nitrogen' type are expected to be favorable.

Effect of Inorganic and Organic Trace Mineral Supplementation on the Performance, Carcass Characteristics, and Fecal Mineral Excretion of Phase-fed, Grow-finish Swine

  • Burkett, J.L.;Stalder, K.J.;Powers, W.J.;Bregendahl, K.;Pierce, J.L.;Baas, T.J.;Bailey, T.;Shafer, B.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1279-1287
    • /
    • 2009
  • Concentrated livestock production has led to soil nutrient accumulation concerns. To reduce the environmental impact, it is necessary to understand current recommended livestock feeding practices. Two experiments were conducted to compare the effects of trace mineral supplementation on performance, carcass composition, and fecal mineral excretion of phase-fed, grow-finish pigs. Crossbred pigs (Experiment 1 (Exp. 1), (n = 528); Experiment 2 (Exp. 2), (n = 560)) were housed in totally-slatted, confinement barns, blocked by weight, penned by sex, and randomly assigned to pens at approximately 18 kg BW. Treatments were allocated in a randomized complete block design (12 replicate pens per treatment) with 9 to 12 pigs per pen throughout the grow-finish period. In Exp. 1, the control diet (Io100) contained Cu as $CuSO_{4}$, Fe as $FeSO_{4}$, and Zn (of which 25% was ZnO and 75% was $ZnO_{4}$) at concentrations of 63 and 378 mg/kg, respectively. Treatment 2 (O100) contained supplemental Cu, Fe, and Zn from organic sources (Bioplex, Alltech Inc., Nicholasville, KY) at concentrations of 19, 131, and 91 mg/kg, respectively, which are the commercially recommended dietary inclusion levels for these organic trace minerals. Organic Cu, Fe, and Zn concentrations from O100 were reduced by 25% and 50% to form treatments 3 (O75) and 4 (O50-1), respectively. In Exp. 2, treatment 5 (Io25) contained 25% of the Cu, Fe, and Zn (inorganic sources) concentrations found in Io100. Treatment 6 (O50-2) was identical to the O50-1 diet from Exp. 1. Treatment 7 (O25) contained the experimental microminerals reduced by 75% from concentrations found in O100. Treatment 8 (O0) contained no trace mineral supplementation and served as a negative control for Exp. 2. In Exp. 1, tenth-rib backfat, loin muscle area and ADG did not differ (p>0.05) between treatments. Pigs fed the control diet (Io100) consumed less feed (p<0.01) compared to pigs fed diets containing organic trace minerals, thus, G:F was greater (p = 0.03). In Exp. 2, there were no differences among treatment means for loin muscle area, but pigs fed the reduced organic trace mineral diets consumed less (p<0.05) feed and tended (p = 0.10) to have less tenth-rib backfat compared to pigs fed the reduced inorganic trace mineral diet. Considering that performance and feed intake of pigs was not affected by lower dietary trace mineral inclusion, mineral excretion could be reduced during the grow-finish phase by reducing dietary trace mineral concentration.

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.

Effect of Dietary Copper Sources (Cupric Sulfate and Cupric Methionate) and Concentrations on Performance and Fecal Characteristics in Growing Pigs

  • Huang, Y.;Zhou, T.X.;Lee, J.H.;Jang, H.D.;Park, J.C.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.757-761
    • /
    • 2010
  • This study was conducted to assess the effects of organic and inorganic copper on performance in growing pigs. A total of 100 pigs, average age 63 d and initial body weight 21.46${\pm}$1.13 kg, were assigned to five treatment groups. Dietary treatments included i) CON (basal diet, 0 ppm Cu), ii) T1 (basal diet with 67 ppm Cu as cupric sulfate, $CuSO_4$), iii) T2 (basal diet with 134 ppm Cu as $CuSO_4$), iv) T3 (basal diet with 67 ppm Cu as cupric methionate, CuMet) and v) T4 (basal diet with 134 ppm Cu as CuMet). Throughout the entire experimental period, ADG (average daily gain), ADFI (average daily feed intake) and G/F (gain: feed) ratios showed no significant differences. The dry matter digestibility was improved in the T1, T2, T3, and T4 treatments (p<0.05), as compared with CON. Nitrogen digestibility was improved in the T3 treatment group as compared with CON (p<0.05). As compared with the T1 treatment group, fecal pH values were improved in the CON, T3, and T4 treatment groups (p<0.05). Fecal Cu concentrations were significantly lower in the CON, T3, and T4 treatment groups than in T1 and T2 (p<0.05). The incidence of diarrhea was reduced when the pigs were fed on the T2, T3, and T4 diets as compared with CON. In conclusion, diets supplemented with 67 or 134 ppm Cu as CuMet may prove effective in improving nutrient digestibility and fecal pH value in growing pigs, and fecal Cu concentrations may be reduced by CuMet supplementation.

Efficacy of Uniconazole as a Phytoprotectant Against $SO_2$ Injury in Snap Bean (강남콩에 대한 $SO_2$ 피해경감제로서 uniconazole의 효과에 관한 연구)

  • ;Donald T. Krizek;Roman M. Mirecki;Edward H. Lee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • This study was conducted to determine the efficacy of using uniconazole,[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penten-3-ol)] as a phytoprotectant against $SO_2$ injury in snap been (Phaseolus vulgaris L. 'Strike'). Thirteen days prior to $SO_2$ fumigation, plants were given a 100 ml soil drench of uniconazole solution at concentrations of 0.02, 0.10, 0.25 and 0.50 mg/pot. All four uniconazole concentrations were significantly effective in providing protection against $SO_2$ exposure(3 h at 1.5 ppm), but uniconazole treatment above 0.02 mg/pot severely reduced stem elongation, leaf enlargement, flowering date and pod number and weight. Uniconazole treatment had little or no effect on stomatal conductance but reduced transpiration rate on a whole plant basis by nearly 40%. This may reflect an alteration in canopy structure by reducing stem elongation and leaf enlargement. Although uniconazole did not increase the activities of superoxide dismutase(SOD) and peroxidase(POD) in non-$SO_2$-fumigated plants, it significantly increased those enzyme activities in $SO_2$-fumigated plants. Chlorophyll concentration on the basis of unit area was increased 50-60% by uniconazole. However, the difference was not detected on the basis of dry weight. $SO_2$ increased variable chlorophyll fluorescence (Fv) 48% after 1.5 h of exposure in non-uniconazole treated plants but decreased Fv in the plants after 3 h of exposure. By appliing uniconazole, it was possible to maintain high Fv values in the latter group of plants. These results suggest that the phytoprotective effects of uniconazole are related to its growth-retarding properties as an anti-gibberellin as well as the increase of activites of free radical scavengers such as SOD and POD.

  • PDF

Effect of Exogenous Sulfur on Hydrogen Peroxide, Ammonia and Proline Synthesis in White Clover (Trifolium repens L.)

  • Baek, Seon-Hye;Muchamad, Muchlas;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.195-200
    • /
    • 2022
  • Sulfur is an essential element in plants, including amino acids, vitamin synthesis, and acting as an antioxidant. However, the interaction between endogenous sulfur and proline synthesis has not been yet fully documented. White clover (Trifolium repens L.) is known as a species highly sensitive to sulfate supply. Therefore, this study aimed to elucidate the role of sulfur in regulating proline metabolism in relation to ammonia detoxification and hydrogen peroxide (H2O2) accumulation in white clover. The detached leaves of white clover were immersed in solution containing different concentration of sulfate (0, 10, 100, and 1000 mM MgSO4). As MgSO4 concentrations were increased, the concentration of H2O2 increased up to 2.5-fold compared to control, accompanied with H2O2 detection in leaves. Amino acid concentrations significantly increased only at higher levels (100 and 1000 mM MgSO4). No significant difference was observed in protein concentration. Proline and ∆1-pyrroline-5-carboxylate (P5C) concentrations slightly decreased at 10 and 100 mM MgSO4 treatments, whereas it rapidly increased over 1.9-fold at 1000 mM MgSO4 treatment. Ammonia concentrations gradually increased up to 8.6-fold. These results indicate that exogenous sulfur levels are closely related to H2O2 and ammonia synthesis but affect proline biosynthesis only at a higher level.

Saturation curves for chemical coagulation of wastewater treatment (화학 응집제 투입에 따른 수질항목별 하수처리 반응곡선)

  • Ryu, Jae-Na;Oh, Je-Ill;Lee, Kyeoung-Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2010
  • Recently the Government has announced updated water quality standards for wastewater treatment effluent (become effective in 2012). That includes highly enforced regulations for T-P, BOD and COD, and a large budget, in particular for phosphorus removal, was set by the Ministry of environment. Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs, and solid particles are removed by solid-liquid separation. The efficiency of chemical coagulation depends on a various factors, including coagulant types and costs, construction and operation costs for the treatment facilities and so on. The proper selection should be based on the treatment efficiency of coagulants and underlying costs. The current research was to evaluate the treatment efficiencies of coagulants on a variety of wastewater influents and to develop saturation curves for several water quality parameters. Typical $Al_2(SO_4)_3$ and $FeCl_3$ were tested under a range of coagulant concentrations. The pollutant removal efficiencies of chemical treatment both for the $Al_2(SO_4)_3$ and $FeCl_3$ were especially high for T-P, followed by SS, BOD and COD. Correlation test also proved the highest relationship between SS and T-P.

The Effects of Coadministration of Haloperidol and Bethanechol on Plasma Haloperidol and Reduced Haloperidol Concentrations (Haloperidol과 bethanechol 병합사용시 혈장 haloperidol 및 reduced haloperidol 농도에 미치는 영향)

  • Kim, Hyeong-Seob;Ahn, Jee-Young;Yeo, Un-Tae;Jo, Suk-Haeng
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.114-121
    • /
    • 1998
  • Bethanechol, a cholinergic agonist, has been recommended for the management of peripheral anticholinergic side effects during the treatment of antipsychotic medications. But there have been few studies which have evaluated the drug interactions of antipsychotics and bethanechol, even the treatment effects of bethanechol on anticholinergic side effects. So the authors have evaluated whether psychopathology and plasma haloperidol and reduced haloperidol concentrations are significantly changed or not when bethanechol was administrated with maintained doses of haloperidol and other coadministrated drugs(such a benztropine). Also we have evaluated the abating effects of bethanechol on anticholinergic side effects during the treatment with haloperidol. Fifteen schizophrenics with higher than 5 of total score of anticholinergic side effects of 'Rating scale for side effect' were assigned to two groups, and bethanechol 30mg/day and 60mg/day were applied on each group for 4 weeks. The daily haloperidol dosages were fixed before 2 weeks of study. We assessed anticholinergic side effects by 'Rating scale for side effect' and psychopathology by BPRS, and plasma haloperidol and reduced haloperidol concentrations by HPLC at baseline, 2nd week and 4th week. The results were as followed, 1) there was no significant change of plasma haloperidol and reduced haloperidol concentration, 2) at baseline, the dosage of haloperidol showed significant correlation with the total score of anticholinergic side effect, but not at 2nd week and 4th week, 3) in 60mg/day group, dry mouth and the total score of anticholinergic side effects were significantly improved, but not in 30mg/day group, 4) there was no significant change of BPRS except withdrawal at 2nd week. These results suggest that coadministration of bethanechol influenced neither on psychopathology nor on plasma haloperidol and reduced haloperidol concentrations and that improved dry mouth and total score of anticholinergic side effects at 60mg/day.

  • PDF

A Study on Selection of SO2 Resistant Tree Species - I. Leaf Disk Experiment - (SO2에 대한 내성수종(耐性樹種)의 선발(選拔)을 위한 기초연구(基礎研究) - I. 엽조직(葉組織) 실험(實驗) -)

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.223-228
    • /
    • 1988
  • To select $SO_2$-resistant tree species, leaf disks of 6mm in diameter, cut from the leaves of 6 species (Wistaria floribunda, Magnolia obovata, Rosa multiflora, Liriodendron tulipifera, Robinia pseudo-acacia and Acer palmatum) were floated on 25ml of testing medium and placed on laboratory under fluorescent lamp (1,500 Lux) for 20 hours. Chlorophyll content and acidity of the testing medium were measured. Testing medium was prepared by diluting $H_2SO_4$, $H_2SO_3$ and $Na_2SO_4$ with distilled water for various stoichiometric $SO_2$ concentrations, 0, 25, 50, 100 and 250 ppm. Total chlorophyll content was more decreased after treatment than before treatment, and was decreased more severely in $H_2SO_3$ sources, followed by $H_2SO_4$ and $Na_2SO_4$, sources. Decreasing rate of total chlorophyll content was generally large in Acer palmatum. Magnolia obovata and Wistaria floribunda, and was relatively small in Rosa multiflora, Liriodendron tulipifera and Robinia pseudo-acacia. Decreasing rate of chlorophyll content may be useful index for judging susceptifility of the leaf to $SO_2$. The acidity of the testing medium was generally decreased after treatment, and it means that cell leakage was occurred during treatment. The differences in medium acidity between before and after treatment may be poot index for susceptibility of the leaf to $SO_2$ owing to the difference among tree species in development of leaf mesophyll, acidity maintaining mechanism and butter capacity of the leaf tissue.

  • PDF

Effect of Copper Source (Cupric Citrate vs Cupric Sulfate) and Level on Growth Performance and Copper Metabolism in Pigs

  • Armstrong, T.A.;Spears, J.W.;van Heugten, E.;Engle, T.E.;Wright, C.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1154-1161
    • /
    • 2000
  • Two experiments were conducted to evaluate the efficacy of cupric citrate (Cu-citrate) relative to cupric sulfate $(CuSO_4)$ as a Cu source for weanling and grow-finish pigs. In addition, the use of liver and bile Cu concentrations as indices of the bioavailability of Cu sources was investigated. Experiment one consisted of a nursery phase (35 d; initial BW=6.4 kg, final BW=21.4 kg) followed by a grow-finish phase (103 d; initial BW=21.5 kg, final BW=111.7 kg). Experiment two only consisted of a nursery phase (35 d; initial BW=6.3 kg, final BW=18.6 kg). Dietary treatments were identical for both experiments and consisted of: control (10 ppm $CuSO_4$); control+66 or 225 ppm $CuSO_4$; control+33, 66, or 100 ppm Cu-citrate. An antibiotic was included in diets for Exp. 1 but not Exp. 2. In both experiments, growth performance variables were similar for pigs receiving Cu-citrate and $CuSO_4$; however, growth performance was not improved by high concentrations of $CuSO_4$. Liver and bile Cu were increased (p<0.05) by 225 ppm $CuSO_4$; however, lower dietary concentrations of Cu from either $CuSO_4$ or Cu-citrate did not affect the Cu concentration of liver or bile relative to that observed in the control pigs. Irrespective of Cu source, there was no linear (p>0.10) increase in plasma Cu with increasing Cu concentrations in the diet for both experiments. However, the plasma Cu concentrations were highest (p<0.10) in pigs receiving diets supplemented with 225 ppm $CuSO_4$. Sixteen randomly chosen pigs per treatment in Exp. 1 were continued through the grow-finish phase. Body weight gain and feed intake were improved (p<0.10) by 66 ppm $CuSO_4$, but other dietary Cu treatments did not alter pig performance compared to the control diet. Plasma Cu concentrations were increased (p<0.10) by 225 ppm $CuSO_4$ in the growing phase and by 225 ppm $CuSO_4$ and 100 ppm Cu-citrate in the finishing phase. These data reveal no consistent effect of $CuSO_4$ on performance; therefore, it is difficult to assess the efficacy of these two Cu sources. In addition, these studies demonstrate that liver and bile Cu are not good indicators of Cu bioavailability in pigs fed adequate to pharmacological concentrations of Cu.