• Title/Summary/Keyword: $SO_2$ emission pattern in China

Search Result 2, Processing Time 0.021 seconds

Effects of Regional SO2 Emission Change due to the Western Development in China on the Deposition of sulfur in East Asia: Analysis Using the RAINS-Asia Model (중국의 서부 대개발에 따른 중국의 아황산가스 배출량과 주 배출 지역의 변화가 동아시아 황 침적량에 미치는 영향: RAINS-Asia 모델을 통한 분석)

  • Yeo M.J;Kim Y.P
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • It is widely accepted that, at present, the SO$_2$ emissions in China are not increasing thanks to the rigorous Chinese government policies. However, with the development of western China, it is possible that the SO$_2$ emission amounts might increase in regional scale. In this study, changes of sulfur deposition pattern and unprotected ecosystem in east Asia due to the sulfur emission pattern changes in China are studied by using the RAINS-Asia model. Five scenarios have been postulated to understand the effects on east Asia, especially, on Korea and Japan. It is found that the increase of SO$_2$ emission in western China might increase the total emission in whole China. And the amount of sulfur deposition from western China on east Asia would be higher than those from eastern China. The deposition amount of sulfur species on Asia is 3.2 Mt when SO$_2$ are emitted from western China only while 2.6 Mt from eastern China only. Generally, Korea and Japan are influenced more by emissions from eastern China than western China. However, if the SO$_2$ emissions from western China increase by 100% while those decrease by 10% in eastern China compared to the base case, the deposition amount of sulfur species on Korea and Japan would be higher than the base case. The fraction of unprotected ecosystem in Korea and Japan for the base case are 50 and 5%. However, if the emissions from western China increase by 100% while those decrease by 10% in eastern China, the fraction of unprotected ecosystem in Korea and Japan would be 52 and 6%.

Characteristics of Long-Range Transport of Air Pollutants due to Different Transport Patterns over Northeast Asia (동북아시아 대기오염물질의 이동 패턴에 따른 장거리 수송 특성 연구)

  • Park, Sin-Young;Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.142-158
    • /
    • 2012
  • This paper investigates the physical and chemical characteristics of long-range transport (LRT) process of air pollutants by employing the MM5-CMAQ and its comparison with local emission dominant (LED) case over northeast Asia. We first classified high air pollution days into LRT and LED cases based on the synoptic meteorological variables of vorticity and geostrophic wind speed/direction at a geopotential level of over 850hPa. LRT cases are further categorized into three types of transport patterns (LRT-I-III) according to the air mass pathways from source regions. LRT-I-III are originated from northern, central, and southern China, respectively, identified by back trajectory analysis. Three LRT-I-III groups have different and unique locations of high pressure and transport pathways. The chemical characteristics showed that the simulated spatial distributions varied in terms of locations of maximum concentrations and the temporal variation of surface concentrations. The primary air pollutants such as $NO_x$, $PM_{10}$ and $SO_2$ of all of three LRT cases are well transported into Korea peninsula with different concentration levels. Of LRT cases, LRT-II has the greatest effect on air quality of Korea peninsula, followed by LRT-I and LRT-III. In comparison with LRT, the LED case shows relatively higher air pollution concentrations in general, but showed a variety of different air quality levels following the emission strength pattern. These widely varying patterns are impling the case dependent multi-directional approach for the development of indicators of long-range transport process over northeast Asia.