• Title/Summary/Keyword: $SO_2$ adsorption

Search Result 349, Processing Time 0.039 seconds

Numerical Analysis on Flow Characteristics in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters (백필터를 활용한 흡착/촉매 통합공정 시스템의 반응기 내 유동특성 및 체류시간에 대한 수치해석적 연구)

  • Choi, Choeng-Ryul;Koo, Yoon-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.203-213
    • /
    • 2007
  • Numerical analysis has been performed to understand flow characteristics in the reactor with bag filters in an integrated adsorption/catalytic process which can treat dioxin and $NO_{x}$ together. Computational fluid dynamics technique was employed with Euler-Lagrangian model to consider flue gas and activated carbon particles simultaneously, so that residence time of flue gas and activated carbon particle could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle's size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas and activated carbon particles, and distribution of activated carbon have been obtained from the numerical analysis. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

A Study of $SO_2$ Adsorption Characteristics by Adsorbents in a Fixed Bed Reactor (고정층 반응기를 이용한 흡착제 종류에 따른 $SO_2$ 흡착특성에 관한 연구)

  • 조기철;홍성창;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 1999
  • This study evaluated the availability as an alternative adsorbent which is cheaper and more efficient than CuO/${\gamma}$-$Al_2O_3$ which have been studing vigorously to remove $SO_2$. Five adsorbents (CuO/${\gamma}$-$Al_2O_3$, Iron ore, Slag, LD slag, $Fe_2O_3$) was employed in a fixed bed reactor. $SO_2$ breakthrough curves were obtained as a function of temperature, initial gas velocity and particle size. Saturation capacities calculated by the numerical integration of breakthrough curves of $SO_2$ increased with increasing reaction temperature. $SO_2$ breakthrough curve equation of $Fe_2O_3$ for this system can be expressed as Kr=3,914,000 exp(-37,329.86/RT). By means of the breakthrough curve, the influence of bed height on breakthrough time was also estimated.

  • PDF

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

Study on the Adsorptivity of Korean Bentonite Premixed with Salts (염을 혼합한 국산 Bentonite의 흡착능에 관하여)

  • Myun Sup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 1973
  • The adsorptivity of Methylene Blue on Korean Yeongil bentonite which was premixed with a salt of KF or $NH_{4}Cl$ etc., treated at $200-500^{\circ}C$, washed and dried, was studied. In case of treatment with$NH_{4}Cl$, slight improvement of the adsorptivity of methylene blue on the products was observed. With KF, treated at$200-300^{\circ}C$, the best results was obtained. The adsorption capacity of the products was improved about 1.7 times than that of original bentonite. With $FeSO_4$ or $Na_{2}CO_3$ etc. improvement of the adsorption capacity on the products was not observed.

  • PDF

Separation of Carbon Dioxide Using Pelletized Zeolite Adsorbent with Amine Impregration (아민 함침 성형 제올라이트 흡착제를 이용한 이산화탄소 분리)

  • Hong, Mi So;Pankaj, Sharma;Jung, Yun Ho;Park, Sung Youl;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.244-250
    • /
    • 2012
  • In order to separate of carbon dioxide in the combustion exhaust gas, monoethanolamine (MEA) and piperazine (PZ) impregnated zeolite 13X adsorbents were used. A series of adsorbents were synthesized by impregnating 30, 50 and 70 wt% of MEA and PZ respectively on zeolite 13X pellet. XRD, FT-IR and BET were used to characterize the properties of impregnated pelletized zeolite 13X absorbents. In order to investigate the separation characteristics of carbon dioxide, zeolite pellet, MEA impregnated zeolite and PZ impregnated zeolite pellet were investigated at 25, 50 and $75^{\circ}C$. Amine impregnated pelletized zeolite absorbent has shown that adsorption decreases with increasing temperature. Finally, the carbon dioxide adsorption capacity when emission temperature of the combustion exhaust gas, PZ impregnated zeolite pellet was 1.8 times than zeolite pellet as well as 20 times than MEA impregnated zeolite pellet.

초전도 NMR-CT의 영상 원리 및 그 응용

  • 조장희
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.183-190
    • /
    • 1986
  • Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined.p was also examined.

  • PDF

Studies on Pyrolysis Behaviour of Banana Stem as Precursor for Porous Carbons

  • Manocha, Satish;Bhagat, Jignesh H.;Manocha, Lalit M.
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • Porous carbons have been prepared from different parts of banana stems using two different routes, viz., by pyrolysing the mass at different temperatures as well as by treating the dried mass with chemicals followed by pyrolysis. The pyrolysis behaviour of all these materials has been studied up to $1000^{\circ}C$. Samples treated with acids exhibit more increase in surface area as compared to those treated with alkalies or salts. Analysis of BET surface area shows that the carbon prepared at low temperature shows mixed porosity, i.e., micro and mesopores. Samples heated to high temperature above $700^{\circ}C$ show decrease in macroporosity and increase in microporosity. Liquid adsorption studies have been made using methylene blue and heavy oil. The activated carbons so prepared exhibit higher oil adsorption mainly in the macro and mesopores.

  • PDF

Development of Mono Layer Cell Adsorption Apparatus to Create a Slide for Microscopic Diagnosis (현미경 진단용 슬라이드 제작을 위한 단층세포 흡착장치 개발)

  • Oh, H.Y.;Mun, M.G.;Kim, S.H.;Kim, D.W.;Kang, S.M.;Sung, R.G.;Kim, H.C.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This study aims to design a monolayer cell adsorption apparatus that would help to produce high-quality slides for Liquid-Based Cytology (LBC) of an early cancer diagnosis for human bodies. The LBC collects exfoliated cells of human bodies and spreads the cells on the slides. Through processes of dyeing and cytological examination, the LBC screens for cancers in early stage. In this study, both of a cell suction module and a cell adsorption module, which are the key elements of the monolayer cell adsorption apparatus, were developed, and using those modules, the study set, first, conditions to help both GYN and NON-GYN apply principal cells without de-endothelialization before conducting its own analysis on the utility. As a results, for GYN, apparatus was determined to be able to produce high-quality slides under the condition of 4 and for NON-GYN, the apparatus would come up with other slides of high-quality under the condition of 2. The study carried out a repetitive test on selected conditions and proved 96% of the repetitive success rate. By the results of what has been learned so far, the study presents that the apparatus has a possibility to replace device from South Korea as one of those other currently-applied systems to run the LBC and that the system will also present a new paradigm for cancer diagnosis as it makes a contribution to the improvement in the LBC.

Desorption of Adsorbed Humic Acid on Carbon nano Tubes (카본나노튜브에 흡착된 휴믹산의 탈착에 관한 연구)

  • Jo, Mihyun;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.81-89
    • /
    • 2013
  • Concerns have been raised over the impact of nano materials on soil and groundwater environment with the increasing attention to the potential applications of carbon nano materials in various fields. Particularly, carbon nano materials introduced into water environment readily make complexes with humic acid (HA) due to their hydrophobic nature, so there have been increasing numbers of studies on the interaction between HA and carbon nano materials. In this study, we investigated the solubility of HA and multiwalled carbon nanotubes (MWCNT) in three different surfactant solutions of sodium dodecyl sulfate (SDS), Brij 30 and Triton X-100, and evaluated whether the HA can be effectively desorbed from the surface of MWCNT by surfactant. The objective of this study was to determine the optimal adsorption condition for HA to MWCNT. Futhermore, sodium dodecyl sulfate (SDS), Brij 30, Triton X-100 were used to elucidate the effect of desorption and separation on adsorbed HA on MWCNT. As a result, HA solution with 12.7 mg of total organic carbon (TOC) and 5 mg of MWCNT showed the highest adsorption capacity at pH 3 reacted for 72 hrs. Weight solubilizing ratio (WSR) of surfactants on HA and MWCNT was calculated. HA had approximately 2 times lower adsorption capacity for the applied three surfactants compared to those of MWCNT, implying that the desorption of HA may occur from the HA/MWCNT complex. According to the results of adsorption isotherm and weight solubilizing ratio (WSR), the most effective surfactants was the SDS 1% soluiton, showing 53.63% desorption of HA at pH 3.

Preparation of NaX Zeolite Coated Honeycomb Adsorbents and It's Carbon Dioxide Adsorption Characteristics (NaX 제올라이트가 담지된 허니컴 흡착제의 제조 및 이의 이산화탄소 흡착특성)

  • Yoo, Yoon-Jong;Kim, Hong-Soo;Singh, Ranjeet;Xiao, Penny;Webley, Paul A.;Chaffee, Alan L.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.663-669
    • /
    • 2009
  • The honeycomb adsorbent was prepared for adsorbing and seadsorbent was prepared by using zeolite sheet, which contained zeolite as component. The steady-state adsorption properties and surface morphologies were analyzed and breakthrough characteristics were ananlyzed by providing 16% carbon dioxide mixed gas. By thermal regeneration, carbon dioxide concentration properties were analyzed, and the adsorptive separation process was compared between thermal swing adsorption and pressure swing adsorption after adsorbent temperature change during heating. The breakthrough results of the honeycomb showed possibility parating carbon dioxide from combustion exhaust gas, which had deep impact on climate change, and the characteristics of the adsorbent were studied. Na-X zeolite was coated on a honeycomb prepared with ceramic sheet or active carbon sheet so that the two honycomb can be used at high temperature. Third honeycomb of rotary adsorptive concentration process.