• Title/Summary/Keyword: $SO_2$ adsorption

Search Result 348, Processing Time 0.029 seconds

Removal Characteristic of Acidic Ion in Aqueous Solution by Alumina (알루미나에 의한 수용액 중의 산성이온 제거 특성)

  • Hong, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.454-458
    • /
    • 2007
  • The removal characteristics of ionic species, such as $Ca^{2+}$, $Mg^{2+}$, $Sr^{2+}$, $SO{_4}^{2-}$, $NO{_3}^-$, and $Cl^-$ by adsorption on the alumina were investigated. Alumina precusor powders were prepared from $Al(NO_3)_3{\cdot}9H_2O$ and $NH_4OH$. Alumina materials prepared from the heat treatment in a furnace at $450{\sim}750^{\circ}C$ for 5 h were analysed using FT-IR and the Brunauer-Emmett-Teller (BET) method. The specific surface area of the product particles decreased significantly with treatment temperature. The adsorption capacities of $SO{_4}^{2-}$and $NO{_3}^-$ on alumina were 23 mg/g and 12.4 mg/g, respectively. But, removal efficiencies of $Cl^-$ were less than 4 mg/g. In general, the removal efficiencies of the anion species were decreased with increasing treatment temperature. The best anion removal efficiency was obtained when the alumina was treated under $450^{\circ}C$. Removal efficiencies of $Ca^{2+}$, $Mg^{2+}$, and $Sr^{2+}$ were increased with increasing treatment temperature.

Removal of Benzene and Toluene by Photo-catalyst Adsorbent Prepared from MSWI Fly Ash (소각비산재로 제조한 광촉매 흡착제의 벤젠과 톨루엔 제거특성)

  • Choi So-Young;Shim Young-Sook;Lee Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.431-438
    • /
    • 2005
  • In order to apply the photocatalytic decomposition of aromatic VOCs, adsorbent prepared from MSWI fly ash was coated by $TiO_2$ solution to endow with photo-catalytic function. The effects of coating number, existence of light source and the type of $TiO_2$ solution used for coating were examined. Adsorbent coated with amorphous $TiO_2$ solution showed higher adsorptivity than adsorbent coated with crystal $TiO_2$ solution. Without light source, breakthrough curve of photo -catalyst absorbent for VOCs removal was similar to that of absorbent made from MSWI fly ash. On the other hand, breakthrough time was enlarged with light source and total removal efficiency of benzene and toluene was also increased. It can be explained as photo-decomposition effect of $TiO_2$ photo-catalyst. Total removal efficiency of benzene and toluene was increased according to the increase of coating number with light source. It was due to the effect of adsorption and photo reaction of photo-catalytic adsorbent. But total removal efficiency of benzene was lower than that of toluene. Because benzene was removed more effectively than toluene by adsorption, but photo - decomposition effect oi toluene was more high than benzene.

Dye Adsorption Ability of Chitin in Reactive Dyebath (반응염료염액에서의 키틴의 염료흡착성능)

  • 유혜자;김정희;이혜자;이전숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.349-354
    • /
    • 2002
  • In order to decolorize the reactive dye wastewater, we investigated the dye-adsorption ability of chitin, which was natural polymer obtained from shrimp shell. Chitin particle(less than 250 ${\mu}{\textrm}{m}$n) was prepared from shrimp shells in the processes of decalcification in aqueous hydrochloric acid solution and deproteination in aqueous sodium hydroxide solution. The particle size of chitin was controlled to less than 250 ${\mu}{\textrm}{m}$. Three tripes of the reactive dyes-C.I. Reactive Red 120, C.I. Reactive red 241 and C.I. Reactive Black 5-were used. Dye adsorption ability of chitin was investigated by dipping the particle in the dyebaths of concentration of 0.0l%, 0.03% and 0.05% for various periods of time(1,3,5, 10,20,40,80,160minutes). The influence of addition of salt(Na$_2$SO$_4$) and alkali to the dyebaths on dye-absorption was also investigated. We obtained the following results fur the dye-absolution ability of chitin in the dyebaths of three types of reactive dyes. 1) The amount of dye uptake by chitin was increased by addition of salt to the dyebaths. 2) As the concentration of alkali became higher than 3g/I, the amount of dye uptake by chitin was increased. Chitin showed good dye-adsorption ability, when the alkali concentration was high. 3) Chitin showed equal dye uptake in the three types of dyebaths when the dye concentration was 0.0l%. Over 90% of dyestuffs was adsorbed from the dyebaths in ten minutes. When the dye concentration was higher, better adsorption ability was showed in a dye bath of Reactive black 5 than in the others. When the dye concentration was 0.03%, 90% of Reactive red 120 and Reactive red 241 was adsorbed in 40 minutes and the same of Reactive black 5 in 10 minutes. When the dye concentration was 0.05%, 9()% of Reactive red 120 was adsorbed in 80 minutes, and Reactive black 5 in to minutes.

Photodecomposition Properties of Formaldehyde Using PS Nanofiber and Photocatalyst (극세섬유와 광촉매를 이용한 포름알데히드의 광분해 특성)

  • An H.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.1-6
    • /
    • 2006
  • In this study we proposed on effect of the photodecomcomposition of coated nanofiber by $Pd/TiO_2$ for the removal of formaldehyde gas as indoor air pollutant. The photocatalytic reactor was setup in the inside of rectangular box (volume 2 l), UV lamp and the coating nanofiber with $Pd/TiO_2$. This study investigated the reaction rate and the adsorption constant of Langmuir-Heinshelwood, conversion of formaldehyde gas on temperature ($40^{\circ}C{\sim}80^{\circ}C$), effect of conversion (%) under different concentration, and effect of conversion (%) with humidity level on added $SO_2$ gas. As results, the rate constant (k) and adsorption constant (ft) were 114.94ppmv/min, $0.0036ppmv^{-1}$, respectively. and the conversion (%) of formaldehyde gas on temperature ($40^{\circ}C{\sim}80^{\circ}C$) was decreased to about 24%, compare with the first conversion (%). In conversion effect of increasing humidity levels, the presence of sulfur dioxide further decreased than without sulfur dioxide. the decreasing reason of conversion with presence sulfur dioxide judged as a cause of interference factor on the decrease of contact chance with photocatalysts.

  • PDF

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

Electrochemical Properties of Electroactive Monolayers Having $[Os(bpy)_3]^{2+}$ Moieties

  • Bang, Gyeong Suk;Jeon, Il Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.281-287
    • /
    • 2001
  • Self-assembled monolayers (SAMs) of the alkylthiols with [Os(bpy)3]2+ moiety at the terminal position were prepared on gold electrode surface. Examination of the cyclic voltammograms for the SAM shows that it does not organiz e well unlike alkylthiols, which is attributed to the much larger diameter of [Os(bpy)3]2+ moiety compared with the cross-section of alkyl chains and the distance between the adsorption sites. Electromicrogravimetry study shows that the hydration numbers of the electrolyte were 16 $\pm2$, 11 $\pm1$, 5 $\pm$ 1 and 24 $\pm6$ for ClO4- , PF6-, NO3- , and SO42- , respectively. The binary SAMs of alkylthiols with [Os(bpy)3]2+ terminal-group were prepared by co-adsorption of alkylthiols as spacer molecules, which results in better packing in SAM and accordingly the stability was enhanced.

Application of High-temperature 3-phase Equilibrium Distribution to Dry Scrubber for the Simultaneous Removal of $SO_2$ and Vinyl Chloride (건식세정기에서의 오염물 동시제거를 위한 고온3계평형 모델의 적용과 예비설계에의 응용)

  • 구자공;백경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1990
  • Simultaneous removal efficiencies of hydrophilic and hydrophobic gaseous pollutants are experimentally determined, and the macroscopic removal mechanism of pollutants in a dry scrubber is analyzed using the extended model of three phase equilibrium distribution of pollutant at high temperatures that can describe the different morphological conditions of adsorbent and water at varying relative humidities. For the simplicity, the inside of spray dryer is divided into three regions of ; (1) absorption, (2) three-phase equilibrium, and (3) adsorption, and the removal efficiencies of each pollutants at three regions are observed at different experimental conditions to estimate the effects of important parameters of dry scrubber. The laboratory experiments simulate the three regions of spray dryer with the temperature control and thus evaporation rate of water from the slurry particle. $SO_2$ as a hydrophilic gaseous pollutant and vinyl chloride as a hydrophobic toxic gas are selected for the future field application to soid waste incineration, and the two types of slurry are made of the two sorbents ; 10 wt.% $Ca(OH)_2$, and 10 wt.% NaOH. Result of temperature effect shows the height of absorption plus three-phase region is decreased as the operation temperature is increased, which results in the lower removal efficiency of $SO_2$ but higher removal for vinyl chloride in the adsorption region of dry scrubber. The removal efficiency of $SO_2$ is higher by NaOH slurry than by $Ca(OH)_2$ slurry due to the hygroscopic nature of NaOH, while the removal of vinyl chloride is higher in $Ca(OH)_2$ case. From the analysis of redults using three-phase equilibrium distribution model, the effective two-phase partition coefficients can be obtained, and the possible extention in the application of the three-phase equilibrium model in a dry scrubber design has been demonstrated.

  • PDF

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface (범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구)

  • Minji Kim;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.604-610
    • /
    • 2023
  • The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

Transport of Urea in Waterlogged Soil Column: Experimental Evidence and Modeling Approach Using WAVE Model

  • Yoo, Sun-Ho;Park, Jung-Geun;Lee, Sang-Mo;Han, Gwang-Hyun;Han, Kyung-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The main form of nitrogen fertilizer applied to lowland rice is urea, but little is known about its transport in waterlogged soil. This study was conducted to investigate the transport of urea in waterlogged soil column using WAVE (simulation of the substances Water and Agrochemicals in the soil, crop and Vadose Environment) model which includes the parameters for urea adsorption and hydrolysis, The adsorption distribution coefficient and hydrolysis rate of urea were measured by batch experiments. A transport experiment was carried out with the soil column which was pre-incubated for 45 days under flooded condition. The urea hydrolysis rate (k) was $0.073h^{-1}$. Only 5% of the applied urea remained in soil column at 4 days after urea application. The distribution coefficient ($K_d$) of urea calculated from adsorption isotherm was $0.21Lkg^{-1}$, so it was assumed that urea that urea was a weak-adsorbing material. The maximum concentration of urea was appeared at the convective water front because transport of mobile and weak-adsorbing chemicals, such as urea, is dependent on water convective flow. The urea moved down to 11 cm depth only for 2 days after application, so there is a possibility that unhydrolyzed urea could move out of the root zone and not be available for crops. A simulated urea concentration distribution in waterlogged soil column using WAVE model was slightly different from the measured concentration distribution. This difference resulted from the same hydrolysis rate applied to all soil depths and overestimated hydrodynamic dispersion coefficient. In spite of these limitations, the transport of urea in waterlogged soil column could be predict with WAVE model using urea hydrolysis rate (k) and distribution coefficient ($K_d$) which could be measured easily from a batch experiment.

  • PDF

Kinetics and Mechanism of the Oxidation of Sulfur Dioxide on Nickel Oxide-${\alpha}$-Ferric Oxide System (산화니켈-${\alpha}$ 형 산화철 상에서 이산화황의 산화 반응메카니즘)

  • Kyu Yong Lee;Yong Rok Kim;Sung Han Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 1983
  • The catalytic oxidation of $SO_2$ has been investigated in the presence of vacuum-activated 10 mol % Ni-doped ${\alpha}-Fe_2O_3$ under various partial pressures of $SO_2\;and\;O_2$ at temperatures from 320 to $440{\circ}C$. Over the temperature range $320{\sim}440{\circ}C$, the activation energy is 13.8 $kcal{\cdot}mol^{-1}$. The oxidation rates have been correlated with 1.5 order kinetics; first order with respect to $SO_2$ and 0.5 order with respect to $O_2$. From the kinetic data and conductivity measurements, the adsorption, oxidation mechanism of $SO_2$ and the defect structure of vacuum-activated 10 mol % Ni-doped {\alpha}-Fe_2O_3$ are suggested. $O_2\;and\;SO_2$ appear to be adsorbed essentially as ionic species. Two surface sites, probably an $O^{2-}$ lattice and an oxygen vacancy which is induced by Ni-doping, might be required to adsorb $SO_2\;and\;O_2$. The conductivity measurements and kinetic data indicate that the adsorption process of $SO_2\;{(SO_2+O^{2-}}_{(latt)}{\rightleftharpoons}{{SO_3}^-}_{(ads)}+e')$ is the rate-determining step.

  • PDF