• Title/Summary/Keyword: $SF_6$/N2 Mixture

Search Result 60, Processing Time 0.026 seconds

The Analysis of Insulation Properties with Electron Collision Processes on SF6 Mixture Gases (전자충돌과정을 통한 SF6 혼합기체의 절연특성 분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.197-201
    • /
    • 2010
  • $SF_6$ gas would be used in power transformer, GIS (Gas insulated switchgear) and so on because of its electrically superior insulation and chemically stable structure. Recently, the reduction of $SF_6$ is required to avoid global warming and the researches on the dilution of $SF_6$ with other gases have been carried out. $SF_6$ mixture gases with $N_2$ and $C_xF_y$ have drawn attention to the synergy effect. However, in order to understand the mechanism of the synergy effect, it is important to analyze and evaluate properties of mixture gases quantitatively. In this paper, we investigated the mechanism of synergy effect from electron collision processes and electron energy distribution by solving Boltzmann equation with propagator method. Three kinds of gases for dilution of $SF_6$ ($SF_6/N_2$, $SF_6/CF$4 and $SF_6/C_4F_8$) are considered in this simulation. On the properties of $SF_6/N_2$ mixture gas, the variation of reduced electric field was shown highly within 0%~40% mixtures of $SF_6$. And the more low-level electron energy has been distributed, the higher insulation capability has appeared.

Ionization and Attachment Coefficients in Mixtures of $SF_6$ and $N_2$ ($SF_6-N_2$ 혼합기체(混合氣體)의 전리(電離) 및 부착계수(附着係數))

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.44-47
    • /
    • 2009
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. $SF_6$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_6$ gas characteristics. Electron transport coefficients in $SF_6-N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method. which are ionization coefficient, attachment coefficient, effective ionization coefficient, and critical E/N, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of $SF_6-N_2$ mixture gases.

A study of the Insulation Characteristic in $SF_{6}$-$N_2$ Mixture Gases ($SF_{6}$-$N_2$ 혼합기체의 절연특성에 관한 연구)

  • 하성철;송병두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.613-616
    • /
    • 2001
  • This $SF_{6}$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_{6}$ gas characteristics. Electron transport coefficients in $SF_{6}$-$N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical E/N, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of $SF_{6}$-$N_2$ mixture gases.

  • PDF

A study of the Insulation Characteristic in $SF_6-N_2$ Mixture Gases ($SF_6-N_2$ 혼합기체의 절연특성에 관한 연구)

  • Ha, Sung-Chul;Song, Byoung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.613-616
    • /
    • 2001
  • This SF6 gas is widely used in industrial of insulation field. In this paper, N2 is mixed to improve pure SF6 gas characteristics. Electron transport coefficients in SF6-N2 mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical EIN, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of SF6-N2 mixture gases.?⨀␍?܀㘱〮㜳㬓M敤楣楮攠慮搠桥污瑨

  • PDF

Partial Discharge Characteristics on Protrusion Defects in SF6-N2 Mixture Gases (SF6-N2 혼합가스 중 돌출 결함의 부분방전 특성)

  • Jo, Hyang-Eun;Wang, Guoming;Kim, Sun-Jae;Park, Kyoung-Soo;Kil, and Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • Studies on a $SF_6$-mixture and -alternative gas has been in progress to reduce the use of $SF_6$ gas as an insulation material of GIS (gas insulated switchgears). In this paper, we dealt with PD (partial discharge) characteristics in pure $SF_6$ and $N_2$, and their mixtures on aspects of insulation design and risk assessment for GIS. A POC (protrusion on conductor) and a POE (protrusion on enclosure) as the major defects were fabricated to simulate PD. We analyzed the DIV (discharge inception voltage), DEV (discharge extinction voltage), pulse magnitude, counts and phase distribution of PD pulse in $SF_6-N_2$ mixtures ($SF_6$ 100%, $SF_6$ 80%-$N_2$ 20%, $SF_6$ 50%-$N_2$ 50%, $SF_6$ 20%-$N_2$ 80%, and $N_2$ 100%) according to the IEC60270. The DIV, DEV as well as magnitude of PD pulse decreased on the POC as increase of $N_2$ ratio. For the POE, the DIV and DEV in $N_2$ ratio below 50% were the same voltages as those in $SF_6$ 100%. In this experiment, $SF_6$ 80%-$N_2$ 20% mixture could be considered with the equivalent insulation performance to a GIS.

Dielectric Characteristics of $SF_6/N_2$ Mixture Insulation Gas for HV GIL (초고압 GIL을 위한 $SF_6/N_2$ 혼합가스의 절연특성)

  • Chang, Yong-Moo;Kim, Chul-Ho;Kim, Jeong-Tae;Koo, Ja-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.49-49
    • /
    • 2010
  • In this paper, a full scaled gas discharge chamber was designed and fabricated for evaluating the dielectric performance of SF6/N2 mixture gases. And it describes work on AC and lightning impulse dielectric characteristics of SF6/N2 mixture insulation gas from experiments and full scale models.

  • PDF

The Analysis of DC Plasmas Characteristics on SFSF6 and N2 Mixture Gases (SF6/N2 혼합기체의 DC 플라즈마 특성 분석)

  • So, Soon-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1485-1490
    • /
    • 2014
  • $SF_6$ gas has been used for power transformers or gas insulated switchgears, because it has the superior insulation property and the stable structure chemically. It has been, however, one of global warming gases and required to reduce the its amount. Some papers have reported that its amount could be reduced by mixing with other gases, such as $N_2$, $CF_4$, $CO_2$ and $C_4F_8$ and their mixture gases would cause the synergy effect. In this paper, we investigated the characteristics of DC plasmas on $SF_6$ mixture gases with $N_2$ at atmospheric pressure. $N_2$ gas is one of cheap gases and has been reported to show the synergy effect with mixing $SF_6$ gas, even though $N_2$ plasmas have electron-positive characteristics. 38 kinds of $SF_6/N_2$ plasma particles, which consisted of an electron, two positive ions, five negative ions, 30 excitation and vibration particles, were considered in a one dimensional fluid simulation model with capacitively coupled plasma chamber. The results showed that the joule heating of $SF_6/N_2$ plasmas was mainly caused by positive ions, on the other hand electrons acted on holding the $SF_6/N_2$ plasmas stably. The joule heating was strongly generated near the electrodes, which caused the increase of neutral gas temperature within the chamber. The more $N_2$ mixed-ratio increased, the less joule heating was. And the power consumptions by electron and positive ions increased with the increase of $N_2$ mixed-ratio.

Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구)

  • Kim, Dae-Hoon;Kim, Guang-Lim;Jo, Hang-Dae;Park, Jong-Soo;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.660-667
    • /
    • 2010
  • In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride($SF_6$) which is one of the six greenhouse gases from $N_2/SF_6$ mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for $N_2$ with $N_2/SF_6$ selectivity of 2.44-5.08 at various pressure and temperature. For recovery of $SF_6$, a membrane module and 10 vol.% $SF_6$ from $N_2/SF_6$ mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the $SF_6$ purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the $SF_6$ recovery ratio in retentate side was increased up to 89% with decreasing the $SF_6$ purity in retentate side.

A Study on Characteristics of Insulation Breakdown by the Mixing Ratio of enhanced Dry Air and SF6 (개선된 Dry Air와 SF6의 혼합비에 따른 절연파괴 특성 연구)

  • Seok, Jeong-Hoo;Beak, Jong-Hyun;Lim, Dong-Young;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.86-93
    • /
    • 2016
  • It is very desirable that a mixture gas possessing excellent insulation performance is suggested for insulation on increasing high voltage. This paper proposes a $SF_6$ mixture gas based on the factors including dielectric strength, environmental impact and economic feasibility of manufacture for the insulation in eco-friendly power equipment. A suitable-$SF_6$ content was determined to improve the dielectric strength in $N_2$ and Dry Air. The examination results of the factors revealed that a $SF_6$/Dry Air mixture gas possessing the $SF_6$ content was more appropriate than a $SF_6/N_2$ mixture gas to the eco-friendly power equipment. In addition to the selection of the suitable $SF_6$ mixture gas, insulation characteristics as a function of $SF_6$ content were described from electron-detachment mechanism.

Lightning Impulse Breakdown Characteristics of SF6-based Mixture Gases (SF6계 혼합가스의 뇌임펄스 절연파괴특성)

  • Seo, Ho-Joon;Rhie, Dong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.675-681
    • /
    • 2005
  • $SF_6$ is widely used as gas insulation medium because of having excellent dielectric and arc-quenching properties. However the use of it is getting to be suppressed from the viewpoint of mitigating global warming. For the development of environmentally-benign electric power equipment and system, novel gases or mixture gases are strongly required as the substitute of $SF_6$ gas. In this study the authors constructed an experimental system to investigate insulation properties of the mixed gases composed of negative $gas(SF_6)$ and electron deceleration gases$(N_2\;and\;CO_2)$. Breakdown and prebreakdown characteristics of $SF_6/N_2/CO_2$ mixture gases were investigated using the above mentioned system for different rates and gas pressures.