• Title/Summary/Keyword: $ReBa_2Cu_3O_{7-x_{11}}$

Search Result 3, Processing Time 0.018 seconds

Peculiarities of SHS and Solid State Synthesis of ReBa2Cu3O7-x Materials

  • Soh, Deawha;Natalya, Korobova
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid-stave chase synthesis for production of high temperature superconductor materials were discussed. Oxide superconductors with general formula of $ReBa_2Cu_3O_{7-x}$ (Re=Y, Sm) haute been made by using barium oxide initial powder instead of traditional barium carbonate. Phenomena observed during the grinding of the reactants mixture are presented. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.

Fabrication and Current Transport Properties of $TmBa_{2}Cu_{3}O_{7-x}$ Coated Conductor by PLD Process (PLD법을 이용한 $TmBa_{2}Cu_{3}O_{7-x}$ 초전도 선재 제작 및 전류전송특성 평가)

  • Kwon, O-Jong;Ko, Rock-Kil;Koo, Hyun;Bae, Sung-Hwan;Jung, Myung-Jin;Oh, Sang-Soo;Park, Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2209-2213
    • /
    • 2009
  • $REBa_{2}Cu_{3}O_{7-d}$(REBCO) coated conductors(REBCO CCs) have been studied for electric power applications which require high current density wires. As long as the critical transition temperature(Tc) is concerned, REBCO CCs with large $RE^{3+}$ ions have been expected to have better current transport properties than those with smaller $RE^{3+}$ ions. For this reason, REBCO's with large $RE^{3+}$ ions which include GdBCO, NdBCO and SmBCO have been mainly considered as the superconducting layer of CCs. On the other hand, REBCO's with smaller $RE^{3+}$ions are expected to have advantages in the fabrication process of CCs because of the lower melting temperature. But it has not yet been made clear which REBCO is the most suitable for the superconducting layer of CCs. In this study, we investigated the current transport properties of REBCO CCs with small $RE^{3+}$ ion and advantages of using that in the CC fabrication process. Thin films of TmBCO, which has smaller $RE^{3+}$ion than most other $RE^{3+}$ ions, were fabricated on buffered metal substrate as the superconducting layer of CC by PLD process. TmBCO CC shows critical current density (Jc (77 K, sf) = $2.3\;MA/cm^2$) high enough to be utilized for application in electric power devices. Compared with previous experiments using the same PLD system, deposition temperature was approximately $20^{\circ}C$ lower than NdBCO thin films on buffered metal substrates.

EPR SPECTRA OF Mn ION WITH TWO PHASES IN THE Y-Ba-Cu-Mn-O HIGH Tc SUPERCONDUCTOR

  • Kim, Seon-Ok;Rudowicz, Czeslaw;Lee, Soo-Hyung;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.782-785
    • /
    • 1995
  • In this paper, $Mn^{2+}$ ion was doped in Y-Ba-Cu-O as an EPR probe. The following samples were prepared by conventional solid-state reaction method : $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (MN-I), annealed $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (AMN) and $YBa_{2}Cu_{2.94}Mn_{0.06}O_{7-\delta}$ (MN-II). AMN sample was obtained from MN-I by annealing for 1 hr under the Ar gas atmosphere at $600^{\circ}C$. X-band (~9.05 GHz) EPR spectra were measured from 103 K to room temperature by employing a JES-RE3X spectroscopy with a $TE_{0.11}$ cylindrical cavity and 100 kHz modulation frequency. In MN-I we have observed only the $Cu^{2+}$ signal. The fact that no $Mn^{2+}$ signal was observed, in spite of $Mn^{2+}$ being a very sensitive EPR probe, indicates that most likely isolated $Mn^{2+}$ ions don't exist in the MN-I sample. Most probably $Mn^{2+}$ ions in the MN-I sample interact antiferromagnetically and hence are EPR silent. The AMN spectra of at room temperature and 103 K indicate not only the $Cu^{2+}$ signal but also an extra signal, which increases with decreasing temperature. It is suggested that the extra signal originates from Mn ions that were antiferromagnetically coupled before the annealing process. In MN-II, from 103 K to room temperature, also, the extra signal was observed together with the $Cu^{2+}$ signal. The extra signal in MN-II, however, decreases with decreasing temperature and nearly disappears at 103 K. The signal originates from Mn ions in impurity phases that include $Mn^{2+}$ ions. We suppose that there exist at least two $Mn^{2+}$ doped phases in Y-Ba-Cu-O. The $Mn^{2+}$ signal of one phase is undectable at all temperature and that of another phase decreases with decreasing temperature and disappears around 103 K.

  • PDF