• Title/Summary/Keyword: $P_{max}$ tracking controller

Search Result 3, Processing Time 0.016 seconds

Maximum power tracking Strategy of a Solar Cell using ZVCS converter (ZVCS 컨버터를 이용한 태양전지 최대전력 검출법)

  • Kwak, Dong-Kurl;Jun, Hyun-Kyu;Kim, Jong-Min;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1032-1034
    • /
    • 2001
  • As well known, a solar cell has an optimal operating point to be able to get the maximum power $P_{max}$. So, many $P_{max}$ tracking controllers using the line voltage of a solar cell have been popularly used. But it may vary depending on the miss match between the solar cell output and the load. In this paper, we investigate the possibilities of $P_{max}$ control using the current tracking controller and the output voltage and the output current instead of the solar cell output power. And we also examine about the optimal power converter using ZVCS step up and down chopper circuit to operate the solar cell at an optimal voltage using these variables. And then, we show some experimental results to confirm the successful operation.

  • PDF

A Study on High Efficiency DC-AC Inverter of Solar Cell Power System Used in Fire Emergency Equipment (소방 비상용 태양전지 발전시스템의 고효율 직류-교류 인버터 설계에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Bong-Seob
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.181-187
    • /
    • 2006
  • This paper is proposed to a solar cell power system used in fire emergency equipment. Also it is designed with a high efficiency power converter in order to increase efficiency of power system. The controlling switches used in DC-DC booster chopper and DC-AC inverter are operated with soft switching, which is applied to resonant circuit method to reduce switching loss. The result is that the system gets to high efficiency. In this paper, A detection circuit of maximum power point of solar cell is described in this paper. And the performance evaluations for the photovoltaic power system of high efficiency are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

Residential Solar Cell System by driving of High Efficiency Inverter

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.687-691
    • /
    • 2001
  • With today's global environmental and energy problems, high expectations exist for solar power generation to reduce carbon dioxide generated by the consumption of fossil fuels. On the other hand, power consumption in residential homes is increasing every year. Among the many household appliances, the power demand for air conditioners increases dramatically during the summer, particularly in the afternoons. As this pattern closely matches the output pattern of solar cells, it should be possible to combine a photovoltaic array with an air conditioner to decrease the energy consumption within the home. We have developed a residential solar-powered air conditioner that operates through a combination of photovoltaic array and commercial power. In this paper, the configuration and specification of the residential solar-powered system are described to a novel high efficiency inverter using a ZVCS boost converter. And the performance evaluations of the solar-powered air conditioner are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

  • PDF