• 제목/요약/키워드: $PM_{2.5}$ concentrations

검색결과 1,711건 처리시간 0.028초

대학 캠퍼스 주변 호프집, PC방, 당구장의 실내 PM2.5 농도를 통한 ETS 노출 수준 평가 (Evaluation of Indoor ETS Exposure Levels in Pubs, PC Game Rooms, and Billiards Halls around a University Campus using PM2.5 Concentrations)

  • 이재환;박동욱;하권철
    • 한국산업보건학회지
    • /
    • 제26권4호
    • /
    • pp.411-417
    • /
    • 2016
  • Objectives: The aims of this study were to determine the indoor level of environmental tobacco smoke (ETS) and to assess the implementation rate of smoke-free laws at hospitality venues around a university campus by measuring particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$) as an indicator of ETS. Materials and Methods: We measured indoor $PM_{2.5}$ concentrations at 20 PC game rooms, 20 pubs, and 20 billiards halls using Sidepak AM510, a direct reading portable real time monitor, from October to December 2015. Results: Smoking was observed in 65% of the PC game rooms, 10% of pubs, and 85% of billiards halls. The average $PM_{2.5}$ concentrations were $98.2{\mu}g/m^3$, $29.0{\mu}g/m^3$, and $134.2{\mu}g/m^3$ at PC game rooms, pubs, and billiards halls, respectively. $PM_{2.5}$ concentrations in PC game rooms and billiards halls were 2 to 2.7 times higher than the 24-hour exposure standard for outdoor $PM_{2.5}$ ($50{\mu}g/m^3$) by the Ministry of Environment. Conclusions: Although a smoking ban has been implemented for PC rooms and pubs, smoking is still taking place in many of these places. More stringent legal action is required for successfully protecting patrons and workers from secondhand smoke exposure. A ban on smoking in billiards halls should be introduced as quickly as possible.

공기 궤 유입경로에 따른 한반도 서울 상공의 전체 및 유기 에어로졸 농도 변화 분석 (Dependence of Total and Carbonaceous Aerosol Concentrations on Transport Pathways in Seoul, Korea)

  • 정욱교;김준;김영준;정진상
    • 대기
    • /
    • 제25권1호
    • /
    • pp.141-148
    • /
    • 2015
  • Recently increased anthropogenic aerosols change the radiative energy balance and affect human life. The management of air quality requires monitoring both the local emissions and transported pollutants. In order to estimate the quantitative contribution of long-range transport from remote sources on aerosol concentrations in Seoul, the airmasses were classified into five types with respect to their pathways. When airmass came from west over strong emission regions in China, high concentrations of $PM_{10}$, $PM_{2.5}$, black carbon (BC), organic carbon (OC), and elemental carbon (EC) were found, even higher than those for the stagnated airmass. High OC concentrations were found when airmass came from north while BC, EC, and $PM_{2.5}$ concentrations were lower than those of the stagnated airmasses. During dust events, the $PM_{2.5}$ and $PM_{10}$ concentrations increased significantly while carbonaceous aerosol concentrations did not increased. The temporal variations of aerosol concentrations in Seoul were affected by the seasonal variations of airmass pathways. The high $PM_{2.5}$ concentrations over $100{\mu}g\;m^{-3}$ appeared most frequently when the airmasses came from west.

제주지역 PM10의 수농도 및 질량농도와 원소성분 조성 특성 (Characteristics of the Number and the Mass Concentrations and the Elemental Compositions of PM10 in Jeju Area)

  • 강창희;허철구
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.447-457
    • /
    • 2014
  • The number concentrations, the mass concentrations and the elemental concentrations of $PM_{10}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010. And the correlation and the factor analysis for the number, the mass and the elemental concentrations of $PM_{10}$ are performed to identify their relationships and sources. The average $PM_{10}$ number concentration is observed $246\;particles/cm^3$($35.7{\sim}1,017\;particles/cm^3$) and the average $PM_{10}$ mass concentration is shown $50.1{\mu}g/m^3$($16.7{\sim}441.4{\mu}g/m^3$) during this experimental period. The number concentrations are significantly decreased with increasing particle size, hence the concentrations for the smaller particles less than $2.5{\mu}m$($PM_{2.5}$) are contributed 99.6% to the total $PM_{10}$ number concentrations. The highest concentration of the 20 elements in $PM_{10}$ determined in this study is shown by S with a mean value of $1,497ng/m^3$ and the lowest concentration of them is found by Cd with a mean value of $0.57ng/m^3$. The elements in $PM_{10}$ are evidently classified into two group based on their concentrations: In group 1, including S>Na>Al>Fe>Ca>Mg>K, the elemental mean concentrations are higher than several hundred $ng/m^3$, on the other hand, the concentrations are lower than several ten $ng/m^3$ in group 2, including Zn>Mn>Ni>Ti>Cr>Co>Cu>Mo>Sr>Ba>V>Cd. The size-separated number concentrations are shown positively correlated with the mass concentrations in overall size ranges, although their correlation coefficients, which are monotonously increased or decreased with size range, are not high. The concentrations of the elements in group 1 are shown highly correlated with the mass concentrations, but the concentrations in group 2 are shown hardly correlated with the mass concentrations. The elements originated from natural sources have been predominantly related to the mass concentrations while the elements from anthropogenic sources have mainly affected on the number concentrations of $PM_{10}$.

2011년 동아시아에서 기류의 이동 경로에 따른 청원에서 측정한 에어로졸 질량 농도 및 원소 성분 분석 (An Analysis of Aerosol Mass Concentrations and Elemental Constituents Measured at Cheongwon depending on the Backward Trajectories of Air Parcel in East Asia in 2011)

  • 김학성;변광태;정용승;최현정;김민정
    • 한국환경과학회지
    • /
    • 제21권7호
    • /
    • pp.855-863
    • /
    • 2012
  • This study analyzed mass concentrations of TSP, PM10 and PM2.5 and elemental constituents according to the isentropic backward trajectories of air parcel from Cheongwonin East Asia during the period January - October, 2011. Mass concentrations of the continental polluted airflow (CP) showed levels of TSP and PM10 mass concentrations higher than the continental background airflow (CB). Also, PM2.5 mass concentrations of anthropogenic fine particles ran higher in CP than in CB. The elemental constituents and elemental constituent ratio ended up varying depending on the origin of atmospheric aerosols generated. The average absolute content of elemental constituents reached its height in CB, the ratio of anthropogenically originating elements (PE) among the all elements (AE) analyzed marked a high in CP, and Mg+Na/AE reached its height in the oceanic airflow (OA). At the same time, TSP, PM10 and PM2.5 mass concentrations, the ratio of PM2.5/TSP and PE/AE element ratio ran higher in CP than CB. Episodes of large-scale transport of atmospheric pollutants as observed at Cheongwon were 8 cases and 22 days. The ratios of PM10, PM2.5 among TSP mass concentrations showed different results and the ratios of PM2.5 showed an increasing trend in the episodes of anthropogenic air pollution transport. Overall, dustfall episodes show a level of elemental constituents higher than those of anthropogenic air pollution.Dustfall episodes were observed to contain more of Fe, Al and Ca originating from continental soils and those of air pollution were observed to contain more of Zn, Mn, Cu and Pb. By difference in contents of absolute elemental constituents, episodes of anthropogenic air pollution showed a high PE/AE rate, and dustfall episodes a high SE/AE rate.

WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로 (Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017)

  • 남기표;임용재;박지훈;김덕래;이재범;김상민;정동희;최기철;박현주;이한솔;장임석;김정수
    • 환경영향평가
    • /
    • 제27권2호
    • /
    • pp.215-231
    • /
    • 2018
  • 본 연구에서는 지상 기상 및 $PM_{2.5}$ 농도, GOCI 위성의 AOD 등 다양한 관측 자료와 WRF-CMAQ 모델링을 통해 2016년과 2017년의 우리나라 가을철 $PM_{2.5}$ 농도변화 원인을 분석하였다. 지상에서 관측된 2017년 전국 평균 $PM_{2.5}$ 농도는 2016년에 비해 약 12.3% ($3.0{\mu}g/m^3$) 감소한 것으로 나타났다. 두 해간 $PM_{2.5}$ 농도 차이는 10월과 11월의 두 사례(사례1: 10월 11일~10월 20일, 사례2: 11월 15일~19일) 기간에 주로 발생하였으며, 2017년의 기상조건이 2016년에 비하여 국외로부터 대기오염물질의 장거리 수송이 어렵고, 국내의 대기환기 효과를 증가시키는 방향으로 변화한 것이 주요한 원인으로 분석되었다. WRF-CMAQ 모델링 시스템을 이용하여 기상조건 변화가 $PM_{2.5}$ 농도에 미치는 정량적인 영향을 평가한 결과, $PM_{2.5}$ 모의농도는 2016년 대비 2017년의 사례1 기간에는 64.0% ($23.1{\mu}g/m^3$) 감소, 사례2 기간에는 35.7% ($12.2{\mu}g/m^3$) 감소한 것으로 나타나, 관측 농도 기반 감소율인 53.6% (사례1)와 47.8% (사례2)에 상응하는 감소율을 보였다. 따라서 기상조건 변화가 우리나라 가을철 $PM_{2.5}$ 농도 변화에 큰 영향을 미치는 것으로 분석되었다. 기상조건 변화로 인한 우리나라 $PM_{2.5}$ 농도 감소에 미친 국내외 기여율은 사례1 기간에 국외로부터의 장거리 수송영향이 52.8% 그리고 대기환기 효과에 따른 국내영향이 47.2% 로 국내외 영향이 유사하게 나타나지만, 사례2 기간에는 국외영향이 66.4% 그리고 국내영향이 33.6%로서 국외영향의 감소효과가 더 크게 나타났다.

아파트 실내·외 미세먼지(PM10, PM2.5)와 블랙카본(Black Carbon)의 계절별 농도 및 시간대별 분포 특성 사례연구 (A Case Study on Distribution Characteristics of Indoor and Outdoor Particulate Matter (PM10, PM2.5) and Black Carbon (BC) by Season and Time of the Day in Apartments)

  • 박신영;윤단기;공혜관;강상현;이철민
    • 한국환경보건학회지
    • /
    • 제47권4호
    • /
    • pp.339-355
    • /
    • 2021
  • Background: Particulate matter (PM10, PM2.5) and black carbon contribute to poor air quality in urban areas, and can also affect indoor environments. Exposure to PM can be associated with respiratory and lung diseases. Objectives: This study investigated the indoor and outdoor concentration distribution patterns of PM10, PM2.5, and black carbon at an apartment building, a typical residential space in the metropolitan areas of South Korea, by season, day of the week (weekday vs. weekend), and time of the day. It aims to obtain foundational data for the effective management of pollutants and investigate the difference in pollution levels between indoor and outdoor environments. Methods: Indoor and outdoor concentrations of PM and black carbon were measured at an apartment building located in Namyangju, Gyeonggi-do Province, using dust sensors and an Aethalometer AE51 (AethLabs, San Francisco, CA, USA) over the course of a year from June 2020 to May 2021. The concentration distribution patterns were analyzed by season and time of day. Results: PM10 and PM2.5 concentrations in the outdoor environment were higher than those in the indoor environment, regardless of the season. By contrast, the indoor black carbon concentration was higher than that in the outdoor environment during summer and autumn. The concentrations of PM10, PM2.5 and black carbon were found to be higher on weekdays than during weekends, especially during rush hour, with concentrations of 25.92~56.58 ㎍/m3, 21.12~44.82 ㎍/m3, 0.63~3.40 ㎍/m3. Conclusions: The outdoor concentrations of PM10, PM2.5, and black carbon were higher during the weekdays, especially during rush hour, than during weekends. This study is expected to provide basic data for the health management of apartment occupants because it is measured over a period of more than one year.

Annular Denuder System을 이용한 수도권지역의 산성오염물질 및 $PM_{2.5}$ 성분농도 특성 (Characteristics of Acidic Air Pollutants and $PM_{2.5}$ Species in Seoul-Metropolitan Areas Using an ADS)

  • 강충민;이승일;조기철;안준영;최민규;김희강
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.305-315
    • /
    • 1999
  • The annular denuder system(ADS) was used to determine characteristics of acidic air pollutants and $PM_{2.5}$ species in Seoul-metropolitan areas. All measurements were done simultaneously in downtown(Kwanghwamun, Mullae, Chamshil, Ssangmun dongs) and outskirts(Puch n, Kuri cities) during four seasons. The samples were analyzed using ion chromatography for gas-phase matters(HCl, $HNO_2$, $HNO_3$ and $SO^2$) and particulate phase matters($Cl^-$, $NO^{2-}$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^-$ and $Ca^{2+}$) and was measured fine particles($PM_{2.5}$). The seasonal mean concentrations of HCl, HNO2, HNO3 and SO2 in downtown and outskirt areas were very similar. All chemical species monitored from this study showed seasonal variations. Nitric acid(HNO3) and Nitrous acid(HNO2) were showed higher concentrations during the summer. $PM_{2.5}$, $SO_4^{2-}$, $NH_4^-$, $NO_3^-$ and $Cl^-$ in the particulate phase matters were higher levels during the winter months. The concentrations of these components were 54.8, 3.82, 2.49, 1.80 and 1.02$\mu\textrm{g}$/㎥, respectively.

  • PDF

모유중 필수미량금속류의 함량에 관한 조사연구 (Studies on the Concentrations of Essential Trace Elements in Breast Milk)

  • 조윤승;김대선
    • 환경위생공학
    • /
    • 제2권3호
    • /
    • pp.39-47
    • /
    • 1987
  • Breast milk samples collected from 8 areas of 59 lactating women were analysed by atomic absorption spectrophotometry for copper, zinc and manganese concentrations. The results were as follows; 1. The mean levels of Cu, Zn and Mn in the total samples were $342.6\pm138.9{\mu}g/l$ of Cu, $2.01\pm1.44mg/l$ of Zn and $8.67\pm5.12{\mu}g/l$ of Mn. 2. The mean Cu levels by lactation periods were $504.5\pm166.2{\mu}g/l$ in 1-4 weeks, $345.0\pm100.0{\mu}g/l$ in 5-12 weeks, $276.4\pm84.8{\mu}g/l$ in 13-36 weeks and indicated decreasing concentrations by the post-partus period progressed. (p<0.01) 3. The mean Zn levels were $3.50\pm2.10mg/1$ in 1-4 weeks, $2.08\pm0.79mg/1$ in 5-12 weeks, $1.38\pm0.91mg/l$ and showed the decline trend by the lactation periods. (p< 0.01) 4. The mean levels of Mn were $8.964\pm3.313{\mu}g/l$ in 1-4 weeks, $7.971\pm6.066{\mu}g/l$ in 5-12 weeks, $8.357\pm4.966{\mu}g/$ in 13-36 weeks and didn't indicate significant decreasing concentrations by the lactation periods.

  • PDF

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

Correction Factors for Outdoor Concentrations of PM2.5 Measured with Portable Real-time Monitors Compared with Gravimetric Methods: Results from South Korea

  • Yun, Dong-Min;Kim, Myeong-Bok;Lee, Jun-Bok;Kim, Bo-Kyeong;Lee, Dong-Jae;Lee, Seon-Yeub;Yu, Sol;Kim, Sung-Roul
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1559-1567
    • /
    • 2015
  • This study investigated the association between $PM_{2.5}$ concentrations obtained with portable real-time monitors and those obtained with gravimetric methods in national urban air-quality monitoring sites in Seoul, South Korea. We used the SidePak AM510 Personal Aerosol Monitor (TSI Inc., 500 Cardigan Road Shoreview, MN) and DustTrak DRX 8533 (TSI Inc., 500 Cardigan Road Shoreview, MN) as portable real-time monitors for measuring $PM_{2.5}$ concentrations and compared these values with those measured with the PMS-103 or SEQ 47/50 models operated by Federal Reference Method (FRM) or the European Committee for Standardization(ECS), respectively, in national urban air-quality monitoring sites in Seoul. Measurements were conducted every other day in the winter and spring seasons of 2014. The estimated daily mean concentrations of $PM_{2.5}$ ranged between 13.4 and $161.9{\mu}g/m^3$ using AM 510 and between 22.0 and $156.0{\mu}g/m^3$ using DustTrak. The Spearman correlation coefficient for $PM_{2.5}$ concentrations between AM 510 and gravimetric results was 0.99, and the correlation between DustTrak and gravimetric results was 0.87. The correction factor suggested was 0.42 and 0.29 for AM 510 and DustTrak, respectively. We found that $PM_{2.5}$ concentrations measured with real-time monitors could overestimate true $PM_{2.5}$ concentrations and therefore the application of a correction factor (0.43) is strongly suggested for quantification when Real-time monitors were operated of $PM_{2.5}$ levels at urban atmospheric environment of South Korea.