• Title/Summary/Keyword: $PM_{10}$Subway cabin

Search Result 14, Processing Time 0.021 seconds

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

Removal Efficiency of PM10 & $CO_2$ in Subway Mock-up Cabin (지하철 목업차량내 객실 공기정화장치의 미세먼지(PM10) 및 $CO_2$ 저감성능평가)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;Cho, Goan-Hyun;Nam, Goong-Seok;Lee, Joo-Yeol;Kim, Tae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.613-618
    • /
    • 2011
  • More than 7 million persons use Seoul Metropolitan Subways (SMS) everyday and the number has been in increasing trend. With the increasing trend of concerns on indoor air quality(IAQ), the management of IAQ has become an important issue, especially in case of subway operators, because most of subway lines are placed underground with poor ventilation condition. The ultimate object of study develop independent cleaning device that reduce efficient fine particle and $CO_2$. Urban subway has characteristics about proper clean air flow, must be installed in narrow space and maintenance cycle has enough time. Two layered electrically pre-charged filters were used for removing particulate matters and gas absorbers are packed between two layer filters for removing gases pollutants such $CO_2$, VOCs and HCHO. Urban subway has characteristics about proper clean air flow, must be installed in narrow space and maintenance cycle has enough time. SCAP prototype is producted as all in one method which decrease fine dust, $CO_2$ and noxious gas. and basic test carry out with quantity of wind, a gap of pressure, sampling efficiency.

  • PDF

Characteristics of PM10 Measured by Different Light-Scattering Instruments in Public Transport Vehicles (광산란 측정장치에 따른 대중교통차량 미세먼지 측정 특성)

  • Kwon, Soon-Bark;Jeong, Wootae;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, indoor $PM_{10}$ concentration was measured by different type of real-time instruments in public transport vehicles. Light-scattering method is widely used in measuring the size of particulate matters and there is two types of light-scattering methods; one is the nephelometer type which measures the light-scattering degree by aerosol cloud, the other is the spectrometer type which measures light-scattering degree by individual particle. We observed the variation of $PM_{10}$ in KTX, subway and express bus carriages by 1-minute resolution and found that there is similar tendency in pattern among 4 light-scattering devices but difference in absolute concentrations. By comparing gravimetric result in a subway cabin, the spectrometer type device, C, was chosen as a reference device. The conversion factors of nephelometer device A-1, A-2, and B were 1.666, 1.463 and 2.125 respectively.

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.