• Title/Summary/Keyword: $PM_{10}$ mass

Search Result 1,356, Processing Time 0.028 seconds

Mid-upper-arm circumference as a screening measure for identifying children with elevated body mass index: a study for Pakistan

  • Asif, Muhammad;Aslam, Muhammad;Altaf, Saima
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • Purpose: Mid-upper-arm circumference (MUAC) is considered an alternative screening method for obesity. The aims of this investigation were to examine the ability of MUAC to correctly identify children with elevated body mass index (BMI) and to determine the best MUAC cutoff point for identification of children with high BMI. Methods: Anthropometric measurements (height, weight, and MUAC) from a cross-sectional sample of 7,921 Pakistani children aged 5-14 years were analyzed. Pearson correlation coefficients between MUAC and other anthropometric measurements were calculated. Receiver operating characteristic curve analysis was used to determine the optimal MUAC cutoff point for identifying children with high BMI. Results: Among 7,921 children, the mean (${\pm}$standard deviation) age, BMI, and MUAC were 10.00 (${\pm}2.86years$), 16.16 (${\pm}2.66kg/m^2$), and 17.73 (${\pm}2.59cm$), respectively. The MUAC had a strong positive correlation with BMI. The optimal MUAC cutoff points indicating elevated BMI in boys ranged from 16.76 to 22.73, while the corresponding values in girls ranged from 16.38 to 20.57. Conclusion: MUAC may be used as a simple indicator of overweight/obesity in children, with reasonable accuracy in clinical settings.

The Aerosol Characteristics in Coexistence of Asian Dust and Haze during 15~17 March, 2009 in Seoul (짙은 황사와 연무가 공존한 대기의 에어러솔 특성 - 2009년 3월 15~17일 -)

  • Lee, Hae-Young;Kim, Seung-Bum;Kim, Su-Min;Song, Seung-Joo;Chun, Young-Sin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.168-180
    • /
    • 2011
  • The variation of the physicochemical properties of atmospheric aerosols in coexistence of the heavy Asian Dust and Haze observed from $15^{th}$ to $17^{th}$ March 2009 in Seoul was scrutinized through the mass and ion concentration observations and synoptic weather analysis. Although the ratio of PM1.0/PM10 was constant at 0.3 (which is typical during Asian Dust period in Korea) during the measurement period, both PM10 and PM1.0 mass concentrations were 3~6 times and 2~4 times higher than that of clear days, respectively. Water-soluble ion components accounted for 30~50% of PM10 and 50~70% of PM1.0 mass concentration. One of the secondary pollutants, $NO_3^-$ was found to be associated with $Ca^{2+}$ and $Na^+$ in coarse mode indicating that the aerosol derived from natural source was affected by anthropogenic pollutants. While the acidity of the aerosols increased in fine mode when the stagnation of weather patterns was the strongest (March $16^{th}$), the alkalinity increased in coarse mode when new air masses arrived with a southwestern wind after ending a period of stagnation (March $17^{th}$). In the selected case, SOR (Sulfur Oxidation Ratio, $nSO_4^{2-}/[nSO_4^{2-}+nSO_2]$) and NOR (Nitrogen Oxidation Ratio, $nNO_3^-/[nNO_3^-+nNO_2]$) values of ion components were higher than the general values during Asian Dust period. These results imply that dust aerosols could be mixed with pollutants transported from China even in heavy Asian Dust cases in Korea.

Changes in aerosol characteristics during 2006 ~ 2008 Asian dust events in Cheonan, Korea (2006 ~ 2008년 황사기간 중 천안시 대기 입자의 특성 변화)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1642-1647
    • /
    • 2009
  • Changes in aerosol characteristics during 2006 ${\sim}$2008 Asian dust events in Cheoan were investigated by measuring mass, ion and elemental concentrations of fine and coarse particles. The average mass concentrations of daily TSP, PM10, PM2.5 were 214.9, 160.3, and 95.9${\mu}\;g/m^3$during Asian dust events, which were 3.08, 2.58, and 1.95 times higher than Non-asian dust events. The maximum concentrations of TSP, PM10, and PM2.5 were 850.1, 534.4, and 233.3${\mu}\;g/m^3$, which were 12.19, 8.60, and 4.76 times higher, respectively. Increases in ion concentrations were not significant during Asian dust events, but elemental concentrations including soil components such as Fe, Al, Ti increased by 17.1 and 43.4 times for fine and coarse particles, respectively. The results clearly indicate that metallic components from soil constituents were the major components in Asian dusts sampled at Cheonan.

Characterization of PM10 and Air-borne Metallic Elements Produced in Asan and Seoul

  • Son, Bu-Soon;Choi, Kyung-Ho;Yang, Won-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.142-145
    • /
    • 2004
  • The purpose of this study was to characterize background mass concentration of fine particle PM10 and metallic composition from September 2001 to August 2002 in comparison with a medium-sized city, Asan and a metropolitan city, Seoul. Annual mean PM10 concentrations in Asan and Seoul were 47.98 and $75.33\;{\mu}g\;/\;m^3$, respectively. The concentrations of PM10 were highest in spring season in both cities. The concentrations of measured metals except As and Pb in Asan were higher than those in Seoul. Yellow dust could affect the mass and metals concentrations of measured PM10 in Asan and Seoul. Relationship between measured metals concentrations showed that Si and Fe were associated with natural sources such as soil. Pb, Cu and Zn were closely related to urban anthropogenic sources such as fuel combustion. Especially, relationship between metals showed different association during yellow dust. Proper management for fine particles is warranted in Asan, considering the concentrations of metallic elements in fine particles in Asan were relatively higher than those in Seoul.

  • PDF

Determination of Optimum Conditions for Mass Rearing of Cadra cautella(Walker)(Lepidoptera: Phycitidae) and Orius laevigatus(Fieber)(Hemiptera: Anthocoridae) (줄알락명나방(Cadra cautella)과 미끌애꽃노린재(Tyrophagus putrescentiae)의 증식 최적화 조건 탐색)

  • Ham, Eun Hye;Choi, Yong Seok;Lee, Jun Seok;Park, Jong Kyun
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.112-115
    • /
    • 2012
  • To develop an efficient mass rearing system for Cadra cautella(Walker) and Orius laevigatus(Fieber) were investigated under the conditions of photoperiod 16L : 8D, $70{\pm}5%$ RH and $23{\pm}2^{\circ}C$. The highest efficiency rate(multiply 28.6) of C. cautella was achieved when using the rearing cage of $20{\ell}$ than $3{\ell}$. The highest efficiency rate(multiply 16.3) of O. laevigatus was achieved when using the rearing cage of $5{\ell}$ (adult 1,500, 10 pcs(10 cm) of plant of egg taking). The moth could be successfully reared with all food substrates tested, of which rice bran(43%) + chick feed(43%) + yeast(14%) assumed to be proper for mass-rearing in view of cost.

Variations of Trace Gases Concentrations and Their Relationship with the Air Mass Characteristic at Gosan, Korea (제주도 고산에서의 미량기체 농도변화와 공기괴 특성과의 관계)

  • Kim, In-Ae;Li, Shan-Lan;Kim, Kyung-Ryul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.584-593
    • /
    • 2008
  • The surface $O_3,\;CO,\;NO_x,\;and\;SO_2$ were measured at Gosan in Jeju Island from May 2004 to April 2005. Over this period, the mean concentrations $({\pm}s.d.)$ of each gas was 40.06 $({\pm}16.01)$ ppbv for $O_3,\;264.92({\pm}115.73)ppbv\;for\;CO,\;1.98({\pm}2.73)ppbv\;for\;SO)_2,\;and\;4.64 ({\pm}3.24) ppbv\;for\;NO_x$. The monthly variations and the diurnal variations of these gases show that the Gosan site is situated in a relatively clean region. However, there were episodic simultaneous peaks in CO and $SO_2$, especially in winter and early spring. Using cluster analysis with air mass back- ward trajectory analysis, we suggest that these episodes are due to the influence of transportation of polluted air mass from polluted regions. In the cluster, which was under the dominant influence of clean maritime air mass, low levels of $O_3,\;CO,\;and\;SO_2$ were observed. The levels of these species were elevated in the other two clusters which had the air mass influenced by polluted continental regions. In addition, ratios of the chemical species such as $CO/NO_x,\;SO_2/NO_x,\;and\;CO/SO_2$ revealed the somewhat different characteristics of emission sources influencing each cluster. The differences in concentration of trace gases among clusters with different origin and transport pathways imply that Gosan is under the effect of pollution transported from other regions.

Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis (중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구)

  • 정용삼;문종화;김선하;박광원;강상훈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009 (2009년 한국 중부 지역에서 MODIS 에어로졸 광학 성질과 질량 농도의 분석)

  • Kim, Hak-Sung;Kim, Ji-Min;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.269-279
    • /
    • 2012
  • Satellite-retrieved data on Aerosol Optical Depth (AOD) and ${\AA}$ngstr$\ddot{o}$m exponent (AE) using a Moderate Resolution Imaging Spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March ($0.44{\pm}0.25$) and low in September ($0.24{\pm}0.21$) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in Northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. Although $PM_{10}$ with diameters ${\leq}10{\mu}m$ was the highest in February at Anmyon, Cheongwon and Ulleung, which is located leeward about half-way through the Korean Peninsula, AOD rose to a high in May. The growth of hygroscopic aerosols moving with increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically reaches its highest value ($1.30{\pm}0.37$) in August due to anthropogenic aerosols originating from industrial areas in Eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of $PM_{10}$ at Anmyon, Cheongwon and Ulleung were 0.4-0.6. Four cases (six days) of mineral dustfall from sandstorms and six cases (twelve days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. $PM_{10}$ mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing $PM_{10}$ mass concentrations, exhibited higher AOD values in the Yellow Sea region.

A Study on the Metallic and Ion Elements by Fine Particle and Effects of Vessels Exhaust Emission in Busan City (부산지역의 미세먼지 중 중금속 및 이온성분과 선박배출가스의 영향에 관한 연구)

  • Lee, Seung-Won;Son, Yi-Seul;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • The objectives of this study were to investigate the seasonal characteristics of metallic and ion elements of $PM_{10}$(Particulate matter with aerodynamic diameter ${\leq}10\;{\mu}m$) and the effects of vessels exhaust emission from ships harboring in Busan City. The $PM_{10}$ samples were collected from January 2010 to October 2010 at Dongsam-dong(coastal area), in Busan City. The particulate matters were analyzed for major water soluble ionic components and metals. The ranges of the $PM_{10}$ mass concentrations were from 29.8 ${\mu}g/m^3$ to 47.0 ${\mu}g/m^3$ in Dongsam-dong. The $PM_{10}$ mass concentrations in Dongsam-dong are very similar to Gwangbok-dong during same sampling periods. These results were understood by the effects of the shipping source emitted from ships anchoraging and running. The concentrations of water-soluble ions and metals in the $PM_{10}$ had a level of as high as the order of $SO_4^{2-}$>$NO_3^-$>$Cl^-$ and $NH_4^+$>$Na^+$>$Ca^{2+}$>$K^+$>$Mg^{2+}$, respectively. The correlation coefficients($R^2$) for $SO_4^{2-}/PM_{10}$ and $NH_4^+/PM_{10}$ of were 0.7446 and 0.7784, respectively, and it showed the high correlation with each other.

Characteristics of PM2.5 and PM10 Concentration in Pusan Area (부산지역 PM2.5와 PM10의 농도 특성)

  • Kim, Sang-Youl;Cheong, Jang-Pyo;Yi, Seung-Muk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1159-1170
    • /
    • 2000
  • It is necessary to improve the ambient air quality through the proper treatment and control of pollutants by designating air pollutants to regulatory ones. Especially, human took a concern for particulate matters which raised visibility reduction, public health effects and injury of property for urban areas. In order to reduce the effect of particulate matters, we need to establish proper control strategies based on the concentration characteristics of particulate matters. In this study. to evaluate the characteristics of $PM_{2.5}$ and $PM_{10}$. thirty-eight samples of $PM_{2.5}$ and $PM_{10}$ were collected at Nam-Gu sampling site where continuous air monitoring system has been operated, from May, 1999 to November, 1999, and their concentrations for the mass and anion components($Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$) were analyzed. The important conclusions obtained in this study were as followings. Total average mass concentrations of $PM_{2.5}$ and $PM_{10}$ were 35.016 and $50.293{\mu}g/m^3$ respectively. and $PM_{2.5}/PM_{10}$ ratio was calculated 0.692. Total average concentrations of anion components in $PM_{2.5}$ were $1.581(Cl^-)$, $3.690(NO_3{^-})$ and $12.825(SO_4{^{2-}}){\mu}g/m^3$ and those in $PM_{10}$ were $2.471(Cl^-)$, $5.819(NO_3{^-})$ and $14.414(SO_4{^{2-}}){\mu}g/m^3$ respectively. From the correlations analysis. the correlation coefficient between mass concentration of $PM_{2.5}$ and $PM_{10}$ was calculated as 0.945. The correlation coefficients between $PM_{2.5}$ and anion components were analyzed as $Cl^-$(0.025), $NO_3{^-}$(0.788) and $SO_4{^{2-}}$(0.500) respectively, and the correlation coefficients between $PM_{10}$ and anion components were analyzed as $Cl^-$(-0.019), $NO_3{^-}$(0.806) and $SO_4{^{2-}}$)(0.535) respectively.

  • PDF