• Title/Summary/Keyword: $PM_{10}$ and $PM_{2.5}$ concentration

Search Result 2,029, Processing Time 0.041 seconds

An Effectiveness of Simultaneous Measurement of PM10, PM2.5, and PM1.0 Concentrations in Asian Dust and Haze Monitoring

  • Cho, Changbum;Park, Gilun;Kim, Baekjo
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.651-666
    • /
    • 2013
  • This study introduces a novel approach to the differentiation of two phenomena, Asian Dust and haze, which are extremely difficult to distinguish based solely on comparisons of PM10 concentration, through use of the Optical Particle Counter (OPC), which simultaneously generates PM10, PM2.5 and PM1.0 concentration. In the case of Asian Dust, PM10 concentration rose to the exclusion of PM2.5 and PM1.0 concentration. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were below 40%, which is consistent with the conclusion that Asian Dust, as a prime example of the coarse-particle phenomenon, only impacts PM10 concentration, not PM2.5 and PM1.0 concentration. In contrast, PM10, PM2.5 and PM1.0 concentration simultaneously increased with haze. The relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration were generally above 70%. In this case, PM1.0 concentration varies because a haze event consists of secondary aerosol in the fine-mode, and the relative ratios of PM10 and PM2.5 concentration remain intact as these values already subsume PM1.0 concentration. The sequential shift of the peaks in PM10, PM2.5 and PM1.0 concentrations also serve to individually track the transport of coarse-mode versus fine-mode aerosols. The distinction in the relative ratios of PM2.5 and PM1.0 concentration versus PM10 concentration in an Asian Dust versus a haze event, when collected on a national or global scale using OPC monitoring networks, provides realistic information on outbreaks and transport of Asian Dust and haze.

Spaciotemporal Variation of PM10 and PM2.5 Concentration for 2015 to 2018 in Busan (부산지역 최근 4년간(2015~2018년) PM10과 PM2.5농도의 시·공간적 변화 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.749-760
    • /
    • 2020
  • This study investigates the characteristics of diurnal, seasonal, and weekly roadside and residential concentrations of PM10 and PM2.5 in Busan, as well as relationship with meteorological phenomenon. Annual mean PM10 and PM2.5 concentrations in Busan were 44.2 ㎍/㎥ and 25.3 ㎍/㎥, respectively. The PM2.5/PM10 concentration ratio was 0.58. Diurnal variations of PM10 and PM2.5 concentrations in Busan were categorized into three types, depending on the number of peaks and times at which the peaks occurred. Roadside PM10 concentration was highest on Saturday and lowest on Friday. Residential PM10 concentration was highest on Monday and lowest on Friday. Residential PM2.5 concentration was highest on Monday and Tuesday and lowest on Friday. PM10 and PM2.5 concentrations were highest on Asian dust and haze, respectively. The results indicate that understanding the spaciotemporal variation of fine particles could provide insights into establishing a strategy to control urban air quality.

Characteristics of Spacio-Temporal Variation for PM10 and PM2.5 Concentration in Busan (부산지역 PM10과 PM2.5농도의 시간 및 공간적 변화 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.1013-1023
    • /
    • 2010
  • The purpose of this study was to analyze the characteristics of spacio-temporal variation for $PM_{10}$ and $PM_{2.5}$ concentration in Busan. $PM_{10}$ concentration has been reduced for the past three year and exceeded $50\;{\mu}g/m^3$ of the national standard for $PM_{10}$. $PM_{2.5}$ concentration showed gradual decrease or stagnant trends and exceeded the U.S. EPA standard. Seasonal analysis of $PM_{10}$ and $PM_{2.5}$ suggested spring>winter>fall>summer(by Asian dust) and winter>spring>summerenlifall(by anthropogenic effect) in the order of high concentration, respectively. Characterization of diurnal variations suggests that $PM_{10}$ levels at all the three sites consistently exhibited a peak at 1000LST and $PM_{2.5}$ at Jangrimdong experienced the typical $PM_{2.5}$ diurnal trends such that a peak was observed in the morning and the lowest level at 1400LST. In the case of seasonal trends, the $PM_{2.5}/PM_{10}$ ratio was in the order of summer>winter>fall>spring at all the study sites, with a note that spring bears the lowest concentration. During AD events, $PM_{10}$ concentration exhibited the highest level at Jangrimdong and the lowest level at Joadong. And $PM_{2.5}/PM_{10}$ ratio in AD was 0.16~0.28.

Characteristics of Metallic and Ionic Concentrations in PM10 and PM2.5 in Busan (부산지역 PM10과 PM2.5 중의 금속 농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.819-827
    • /
    • 2014
  • This study analyzes the chemical composition of metallic elements and water-soluble ions in $PM_{10}$ and $PM_{2.5}$. $PM_{10}$ and $PM_{2.5}$ concentrations in Busan during 2010-2012 were $97.2{\pm}67.5$ and $67.5{\pm}32.8{\mu}g/m^3$, respectively, and the mean $PM_{2.5}/PM_{10}$ concentration ratio was 0.73. The contribution rate of water-soluble ions to $PM_{10}$ ranged from 29.0% to 58.6%(a mean of 38.6%) and that to $PM_{2.5}$ ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to $PM_{10}$ was 13.9% for 2011 and 9.7% for 2012, while that to $PM_{2.5}$ was 17.4% for 2011 and 10.1% for 2012. $PM_{10}$ concentration during Asian dust events was $334.3{\mu}g/m^3$ and $113.3{\mu}g/m^3$ during non-Asian dust events, and the $PM_{10}$ concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the $PM_{2.5}$ concentration in Asian dust was $157.4{\mu}g/m^3$ and $83.2{\mu}g/m^3$ in Non Asian dust, and the $PM_{2.5}$ concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of $PM_{10}$.

Characteristics of the Springtime Weekday/Weekend on Mass and Metallic Elements Concentrations of PM10 and PM2.5 in Busan (부산지역 봄철 주중/주말의 PM10과 PM2.5 질량농도와 금속이온농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.777-784
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ and $PM_{2.5}$ concentration and metallic elements in Busan in the springtime of 2013. $PM_{10}$ concentration on weekday/weekend were 77.54 and $67.28{\mu}g/m^3$, respectively. And $PM_{2.5}$ concentration on weekday/weekend were 57.81 and $43.83{\mu}g/m^3$, respectively. Also, $PM_{2.5}/PM_{10}$ concentration ratio on weekdays/weekend was 0.75 and 0.65, respectively. The contribution rates of Na to total metallic elements in $PM_{10}$ on weekday/weekend were 38.3% and 38.9%, respectively. It would be useful in control effectively with management of urban fine particle to understand characteristics of fine particle concentration on weekday/weekend.

Trends of the PM2.5 concentrations and high PM2.5 concentration cases by region in Korea (우리나라 지역별 초미세먼지(PM2.5) 농도 추이와 고농도 발생 현황)

  • Yeo, Minju;Kim, Yongpyo
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2019
  • The public's concern on ambient $PM_{2.5}$ has been increasing in Korea. We have estimated (1) the annual and monthly mean $PM_{2.5}$ concentrations, (2) the frequency by the $PM_{2.5}$ concentration interval, and (3) the high concentration occurrence duration time between 2015 and 2018 at 16 administration regions. We found that there have been differences in all three above parameters' trends among the studied 16 regions in Korea. Still, Jeonbuk showed the highest rank in all three parameters' trends. In Jeonbuk, the average $PM_{2.5}$ concentration and the sum of the frequency fraction when the $PM_{2.5}$ concentration being over $75{\mu}g/m^3$ between 2016 and 2018 was $28.4{\mu}g/m^3$ and 9.0%, respectively. And the days when the $PM_{2.5}$ concentration is over $50{\mu}g/m^3$ between 2015 and 2018 were 149. Chungbuk was the only region with the increasing trend of $PM_{2.5}$ concentration between 2016 and 2018. And in Seoul and Gyeonggi, the average $PM_{2.5}$ concentrations decreased whereas the high concentration frequency fraction increased between 2016 and 2018. Also, it is found that there have been differences in the trends of the frequency by the $PM_{2.5}$ concentration interval and the high concentration occurrence duration time between $PM_{10}$ and $PM_{2.5}$.

Characteristics of Diurnal Variation of High PM2.5 Concentration by Spatio-Temporal Wind System in Busan, Korea (시·공간적 풍계에 따른 부산지역 고농도 PM2.5의 일변화 특성)

  • Kim, Bu-Kyung;Lee, Dong-In;Kim, Jeong-Chang;Lee, Jun-Ho
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2012
  • This study was to analyze the characteristics of diurnal variation of high $PM_{2.5}$ concentration, $PM_{2.5}/PM_{10}$ concentration ratio by spatio-temporal wind system (wind speed and wind direction) for high $PM_{2.5}$ concentration (over the 24 hr environmental standard of $PM_{2.5}$, $50{\mu}g/m^3$) in the air quality observation sites (Jangrimdong: Industrial area, Jwadong: Residential area) that were measured for 3 years (2005. 12. 1-2008. 11. 30) in Busan. The observation days of high $PM_{2.5}$ concentration were 182 at Jangrimdong and 27 at Jwadong. The seasonal diurnal variation of hourly mean of high $PM_{2.5}$ concentration and of $PM_{2.5}/PM_{10}$ concentration ratio showed a similar pattern that had higher variation at dawn, and night and in the morning than in the afternoon. Durning daytime in summer at Jwadong, the $PM_{2.5}/PM_{10}$ concentration ratio increased because a secondary particulate matter, which was created by photochemical reaction, decreased the coarse particles of $PM_{10}$ more than the fine particles of $PM_{2.5}$ concentrations in ocean condition. We did an analysis of spatio-temporal wind system (wind speed range and wind direction) in each time zone. The result showed that high $PM_{2.5}$ concentration at Jangrimdong occurred due to the congestion of pollutants emissions from the industrial complex in Jangrimdong area and the transportation of pollutants from places nearby Jangrimdong. It also showed that high $PM_{2.5}$ concentration occurred at Jwadong because of a number of local residential and commercial activities that caused the congestion of pollutants.

Impact of Yellow Dust Transport from Gobi Desert on Fractional Ratio and Correlations of Temporal PM10, PM2.5, PM1 at Gangneung City in Fall (고비사막으로부터 황사수송이 가을에 강릉시의 시간별 PM10, PM2.5, PM1 간의 농도차비와 상관관계에 미치는 영향)

  • Lee, Mi-Sook;Chung, Jin-Do
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • Hourly concentrations of $PM_1$, $PM_{2.5}$ and $PM_{10}$, were investigated at Gangneung city in the Korean east coast on 0000LST October 26~1800LST October 29, 2003. Before the intrusion of Yellow dust from Gobi Desert, $PM_{10}$($PM_{2.5}$, $PM_1$) concentration was generally low, more or less than 20 (10, 5) ${\mu}g/m^3$, and higher PM concentration was found at 0900LST at the beginning time of office hour and their maximum ones at 1700LST around its ending time. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$($PM_{2.5}$ and $PM_1$, and $PM_{10}$ and $PM_1$) was very high with 0.90(0.99, 0.84), and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.37~3.39(0.23~0.54), respectively. It implied that local $PM_{10}$ concentration could be greatly affected by particulate matters of sizes larger than $2.5{\mu}m$, and $PM_{2.5}$ concentration could be by particulate matters of sizes smaller than $2.5{\mu}m$. During the dust intrusion, maximum concentration of $PM_{10}$($PM_{2.5}$, $PM_1$) reached 154.57(93.19, 76.05) ${\mu}g/m^3$ with 3.8(3.4, 14.1) times higher concentration than before the dust intrusion. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$(vice verse, $PM_{2.5}$, $PM_1$) was almost perfect high with 0.98(1.00, 0.97) and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 0.48~1.25(0.16~0.37), local $PM_{10}$ concentration could be major affected by particulates smaller than both $2.5{\mu}m$ and $1{\mu}m$ (fine particulate), opposite to ones before the dust intrusion. After the ending of dust intrusion, as its coefficient of 0.23(0.81, - 0.36) was very low, except the case of $PM_{2.5}$ and $PM_1$ and $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.13~1.91(0.29~1.90), concentrations of coarse particulates larger than $2.5{\mu}m$ greatly contributed to $PM_{10}$ concentration, again. For a whole period, as the correlation coefficients of $PM_{10}$, $PM_{2.5}$, $PM_1$ were very high with 0.94, 1.00 and 0.92, reliable regression equations among PM concentrations were suggested.

Characteristics of Fine Particles at Roadside and Urban Residential Locations in Busan (부산지역 도로변과 주거지역의 PM10과 PM2.5 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.577-586
    • /
    • 2018
  • This research investigated the characteristics of $PM_{10}$ and $PM_{2.5}$ concentration at roadside (Choryangdong) and residential (Sujeongdong) locations in Busan. The $PM_{10}$ concentration at roadside and residential locations were 50.5 and $42.9{\mu}g/m^3$, respectively, and $PM_{2.5}$ at roadside and residential were 28.1 and $23.9{\mu}g/m^3$, respectively. The roadside/residential ratio of $PM_{10}$ and $PM_{2.5}$ concentration were 1.18, and the $PM_{2.5}/PM_{10}$ ratio at roadside and residential were 0.55 and 0.56, respectively. The $PM_{10}$ concentration in spring at roadside were $64.6{\mu}g/m^3$, and were the highest, followed by $48.0{\mu}g/m^3$ and $45.2{\mu}g/m^3$ in winter and summer. Number of exceedances per year of the daily limit value for $PM_{10}$ at roadside and residential were 66 and 39 days, respectively. The $PM_{10}$ and $PM_{2.5}$ concentration, and $PM_{2.5}/PM_{10}$ ratio at roadside were $53.0{\mu}g/m^3$, $29.0{\mu}g/m^3$ and 0.55 for day, and $45.5{\mu}g/m^3$, $26.7{\mu}g/m^3$ and 0.59 for night, respectively. These results indicate that understanding the relationship between roadside and residential could provide insight into establishing a strategy to control urban air quality.

Characteristics of In-cabin PM2.5 Concentration in Seoul Metro Line Number 2 in Autumn (서울시 지하철 2호선의 가을철 객실 PM2.5 농도의 특성)

  • Shin, Hyerin;Jung, Hyunhee;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2019
  • Objectives: Subway is one of the most common transportation modes in Seoul, Korea. The objectives of this study were to determine characteristics of in-cabin $PM_{2.5}$ concentration in Seoul Metro Line Number 2 and to identify factors of the $PM_{2.5}$ concentration. Methods: In-cabin $PM_{2.5}$ concentrations in Seoul Metro Line Number 2 were measured using real-time monitors and the factors affecting $PM_{2.5}$ concentration in cabin were observed. Linear regression analysis of in-cabin $PM_{2.5}$ concentration and indoor/outdoor (I/O) ratio were performed. Results: In-cabin $PM_{2.5}$ concentration was associated with the in-cabin $PM_{2.5}$ concentration in previous station. In-cabin $PM_{2.5}$ concentration was correlated with ambient $PM_{2.5}$ concentration and associated with underground station with control of the in-cabin $PM_{2.5}$ concentration in previous station. I/O ratio increased as the number of passengers increased and when passing through the underground station with control of I/O ratio in previous station. Conclusion: In-cabin $PM_{2.5}$ concentration was affected by ambient $PM_{2.5}$ concentration. Therefore, management of in-cabin $PM_{2.5}$ concentrations should be based on outdoor air quality.