• Title/Summary/Keyword: $PM_{10}$ and $PM_{2.5}$

Search Result 12,427, Processing Time 0.041 seconds

Regional Analysis of Particulate Matter Concentration Risk in South Korea (국내 지역별 미세먼지 농도 리스크 분석)

  • Oh, Jang Wook;Lim, Tea Jin
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.157-167
    • /
    • 2017
  • Millions of People die every year from diseases caused by exposure to outdoor air pollution. Especially, one of the most severe types of air pollution is fine particulate matter (PM10, PM2.5). South Korea also has been suffered from severe PM. This paper analyzes regional risks induced by PM10 and PM2.5 that have affected domestic area of Korea during 2014~2016.3Q. We investigated daily maxima of PM10 and PM2.5 data observed on 284 stations in South Korea, and found extremely high outlier. We employed extreme value distributions to fit the PM10 and PM2.5 data, but a single distribution did not fit the data well. For theses reasons, we implemented extreme mixture models such as the generalized Pareto distribution(GPD) with the normal, the gamma, the Weibull and the log-normal, respectively. Next, we divided the whole area into 16 regions and analyzed characteristics of PM risks by developing the FN-curves. Finally, we estimated 1-month, 1-quater, half year, 1-year and 3-years period return levels, respectively. The severity rankings of PM10 and PM2.5 concentration turned out to be different from region to region. The capital area revealed the worst PM risk in all seasons. The reason for high PM risk even in the yellow dust free season (Jun. ~ Sep.) can be inferred from the concentration of factories in this area. Gwangju showed the highest return level of PM2.5, even if the return level of PM10 was relatively low. This phenomenon implies that we should investigate chemical mechanisms for making PM2.5 in the vicinity of Gwangju area. On the other hand, Gyeongbuk and Ulsan exposed relatively high PM10 risk and low PM2.5 risk. This indicates that the management policy of PM risk in the west side should be different from that in the east side. The results of this research may provide insights for managing regional risks induced by PM10 and PM2.5 in South Korea.

The Correlation between Fine Dust(PM10, PM2.5) and The Number of Acute/Chronic Sinusitis Patients (미세먼지(PM10, PM2.5) 농도가 급성/만성 부비동염의 환자 수에 미치는 영향)

  • Jang, Young-Woo;Kim, Jeong-Yoon;Kim, Hye-Kyung;Lim, Seung-Hwan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.31 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Objectives : The purpose of this study is to analyze the correlation between fine dust(PM10.5, PM2.5) and the number of acute/chronic sinusitis patients. Methods : A simple regression analysis was performed based on the concentration of PM10 and PM2.5 as independent variables and the number of acute/chronic sinusitis patients as dependent variables. Results : As a result of simple regression analysis, if PM10 increases by $1{\mu}g/m^3$, the number of acute sinusitis patients increases by 7,000.291(P<.001, 95%CI :4,951.983-9,048.600). If PM2.5 increases by $1{\mu}g/m^3$, the number of acute sinusitis patients increases by 17,524.476.(P<.001, 95%CI:9,728.725-25,320.228) In addition, PM10 increases by $1{\mu}g/m^3$, the number of acute sinusitis patients increases by 3,163.471 (P<.001, 95% CI:2,268.642-4,058.301). If PM2.5 increases by $1{\mu}g/m^3$, the number of chronic sinusitis patients increases by 8,651.644.(P<.001, 95%CI:5,115.697-12,187.592) Conclusions : Both PM10 and PM2.5 are correlated with changes in the number of sinusitis patients. PM2.5 has effect on the number of patients than PM10. PM10 is the highest correlation in their 50s, PM2.5 in their 60s and 70s.

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Characteristics of the Springtime Weekday/Weekend on Mass and Metallic Elements Concentrations of PM10 and PM2.5 in Busan (부산지역 봄철 주중/주말의 PM10과 PM2.5 질량농도와 금속이온농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.777-784
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ and $PM_{2.5}$ concentration and metallic elements in Busan in the springtime of 2013. $PM_{10}$ concentration on weekday/weekend were 77.54 and $67.28{\mu}g/m^3$, respectively. And $PM_{2.5}$ concentration on weekday/weekend were 57.81 and $43.83{\mu}g/m^3$, respectively. Also, $PM_{2.5}/PM_{10}$ concentration ratio on weekdays/weekend was 0.75 and 0.65, respectively. The contribution rates of Na to total metallic elements in $PM_{10}$ on weekday/weekend were 38.3% and 38.9%, respectively. It would be useful in control effectively with management of urban fine particle to understand characteristics of fine particle concentration on weekday/weekend.

Characterization of PM10 and PM2.5 Mass Concentrations in Jinju (진주시 대기중 PM10 및 PM2.5의 질량농도 특성)

  • Park, Jeong-Ho;Park, Gee-Hyeong;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1963-1970
    • /
    • 2014
  • Ambient particulate matters($PM_{10}$ and $PM_{2.5}$) were investigated at GNTECH university in Jinju city. Samples were collected using a dichotomous sampler(series 240, Andersen Corp.) and a TEOM(Tapered Element Oscillating Microbalance) monitor period from November 2012 to October 2013. For the dichotomous sampler measurements, daily 24-h integrated $PM_{2.5}$ and $PM_{10-2.5}$ ambient air samples were collected at a total flow rate of 16.7 L /min. For the TEOM monitor measurements, daily 1-h integrated $PM_{10}$ ambient air samples were collected at a flow rate of 16.7 L /min. The annual average concentrations of $PM_{10-2.5}$ and $PM_{2.5}$ by a dichotomous sampler were $10.0{\pm}6.1{\mu}g/m^3$ and $22.6{\pm}9.3{\mu}g/m^3$, respectively. And $PM_{10}$ concentration by dichotomous sampler were similar to TEOM monitor by $32.7{\pm}12.9{\mu}g/m^3$ and $31.7{\pm}11.3{\mu}g/m^3$, respectively. And good correlation ($R^2=0.964$) between the two methods was observed. The annual average of $PM_{2.5}/PM_{10}$ ratio was $0.70{\pm}0.12$.

Mass Concentration and Ion Composition of Size-segregated Particulate Matter during the Non-Asian Dust Storm of Spring 2007 in Iksan (익산지역에서 봄철 비황사기간 중 입경별 대기먼지농도와 이온조성)

  • Kang, Gong-Unn;Kim, Nam-Song;Lee, Hyun-Ju
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.300-310
    • /
    • 2008
  • In order to further determine the mass concentration and ion composition of size-segregated particulate matter (PM) during the non-Asian dust storm of spring, $PM_{2.5}$ (fine particle), $PM_{10-2.5}$ (coarse particle), and $PM_{over-10}$ (PM with an aerodynamic diameter larger than $10{\mu}m$) were collected using a MCI (multi-nozzle cascade impactor) sampler of a three-stage filter pack in the spring season of 2007 in the Iksan area. During the sampling period from 5 April to 21 April, a total of 34 samples for size-segregated PM were collected, and then measured for PM mass concentrations by gravimetric measurements and for water-soluble inorganic ion species by using ion chromatography. Average mass concentrations of $PM_{2.5}$, $PM_{10-2.5}$, $PM_{over-10}$ were $35.4{\pm}11.5{\mu}g/m^3$, $13.3{\pm}5.5{\mu}g/m^3$ and $9.5{\pm}4.7{\mu}g/m^3$, respectively. On average, $PM_{2.5}$ accounted for 74% of $PM_{10}$. Compared with the literature from other areas in Korea, the measured concentration of $PM_{2.5}$ were relatively high. Water-soluble inorganic ion fractions in $PM_{2.5}$, $PM_{10-2.5}$, and $PM_{over-10}$ were found to be 47.8%, 28.5%, and 14.7%, respectively. Among the water-soluble inorganic ion species, $SO_4^{2-}$, $NO_3^-$ and $NH_4^+$ were the main components in $PM_{2.5}$, while $NO_3^-$ dominantly existed in both $PM_{10-2.5}$ and $PM_{over-10}$. Non-seasalt $SO_4^{2-}$ (nss-$SO_4^{2-}$ and $NO_3^-$ were found to mainly exist as the neutralized chemical components of $(NH_4)_2SO_4$ and $NH_4NO_3$ in fine particles.

Monitoring of Fine Particles and Particles-bound Mercury in Seongbuk-gu Area of Seoul Metropolitan City (서울 성북지역 미세먼지 및 미세먼지결합 수은의 모니터링)

  • Park, Eun-Jung;Lee, Jong-Wha;Kim, Dae-Seon;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.185-188
    • /
    • 2007
  • PM10 and PM2.5 in ambient air were collected in Seongbuk-gu area of Seoul for one year, from April 2005 to February 2006, and the concentration of PM-bound mercury was monitored. The annual concentrations of particles were $66.4{\pm}43.2{\mu}g/m^3\;(47.6{\pm}19.1{\mu}g/m^3-106.1{\pm}78.0{\mu}g/m^3)$ in PM10 and $37.2{\pm}20.4{\mu}g/m^3\;(28.0{\pm}23.4{\mu}g/m^3{\sim}42.7{\pm}21.4{\mu}g/m^3)$ in PM2.5, which is about 56% of PM10 concentration. The annual average concentrations of mercury were $0.125{\pm}0.078ng/m^3\;in\;PM10\;and\;0.141{\pm}0.080ng/m^3$ in PM2.5, respectively. In April of Asian dust season in Korea, mercury showed the highest concentration in both PM10 and PM2.5.

The Health Effects of PM2.5: Evidence from Korea (대기오염의 건강위해성 연구 - PM2.5를 중심으로 -)

  • Hong, Jong-Ho;Ko, Yookyung
    • Environmental and Resource Economics Review
    • /
    • v.12 no.3
    • /
    • pp.469-485
    • /
    • 2003
  • This paper reports on the results of epidemiological investigation of daily health effects in the elderly associated with daily exposure to particulate matters in Korea. Our main focus is on the potential difference in health effects between PM10 and PM2.5. While the Korean environmental authority has set an ambient standard for PM10, the government currently does not monitor PM2.5, which has no national standard. A daily data on respiratory symptoms as well as PM concentrations are collected for a total of 120 days. Using a probit model, we find statistically significant negative health effects of PM2.5 on respiratory symptoms among the nonsmoking elderly, while PM10 does not show such effects from the estimation. This result suggests that, for air quality regulatory purposes, PM2.5 can be a more appropriate air pollutant than PM10.

  • PDF

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

Effects of Short-term Exposure to PM10 and PM2.5 on Mortality in Seoul (서울시 미세먼지(PM10)와 초미세먼지(PM2.5)의 단기노출로 인한 사망영향)

  • Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.346-354
    • /
    • 2014
  • Objectives: Although a number of epidemiologic studies have examined the association between air pollution and mortality, data limitations have resulted in fewer studies of particulate matter with an aerodynamic diameter of ${\leq}2.5{\mu}m$ ($PM_{2.5}$). We conducted a time-series study of the acute effects of particulate matter with an aerodynamic diameter of ${\leq}10{\mu}m$($PM_{10}$) and $PM_{2.5}$ on the increased risk of death for all causes and cardiovascular mortality in Seoul, Korea from 2006 to 2010. Methods: We applied the generalized additive model (GAM) with penalized splines, adjusting for time, day of week, holiday, temperature, and relative humidity in order to investigate the association between risk of mortality and particulate matter. Results: We found that $PM_{10}$ and $PM_{2.5}$ were associated with an increased risk of mortality for all causes and of cardiovascular mortality in Seoul. A $10{\mu}g/m^3$ increase in the concentration of $PM_{10}$ corresponded to 0.44% (95% Confidence Interval [CI]: 0.25-0.63%), and 0.95% (95% CI: 0.16-1.73%) increase of all causes and of cardiovascular mortality. A $10{\mu}g/m^3$ increase in the concentration of $PM_{2.5}$ corresponded to 0.76% (95% CI: 0.40-1.12%), and 1.63% (95% CI: 0.89-2.37%) increase of all causes and cardiovascular mortality. Conclusion: We conclude that $PM_{10}$ and $PM_{2.5}$ have an adverse effect on population health and that this strengthens the rationale for further limiting levels of $PM_{10}$ and $PM_{2.5}$ in Seoul.