• Title/Summary/Keyword: $PGE_1$

Search Result 861, Processing Time 0.029 seconds

Jahage, Hominis Placenta(HP), suppress bone resorption by inhibition of tyrosine kinase Src, cycloozygenase expression and PGE2 synthesis (자하거의 tyrosine kinase Src, cyclooxygenase 발현, PGE2 합성 등의 저해를 통한 골질재흡수 억제효과)

  • Yang, Jeong-Min;Lee, Tae-Kyun;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.4
    • /
    • pp.56-73
    • /
    • 2007
  • Purpose: 이 실험은 골다공증의 치료약물로 자하거의 골질재흡수 억제효과를 검토하기 위하여 설계되었다. Methods: 자하거의 골질재흡수 효과를 확인하기 위하여 생쥐의 두개골 골모세포를 이용하여 Cyclooxygenase-1(COX-1), COX-2, $TGF-{\beta}$, $L-1{\beta}$, $TNF-{\alpha}$, IL-6, prostaglandin E2등의 활성화 정도를 측정하였으며, 골조직의 미세구조적 변화를 확인하였다. Results: 자하거는 $IL-1{\beta}$, $TNF-{\alpha}$, IL-6 또는 그 세가지의 조합에 의하여 유발된 PGE2의 생성 뿐만 아니라 COX-2 mRNA 수치도 감소시켰으나 COX-1 mRNA 수치에는 영향을 주지 않았다. 이로써 자하거는 시험관내에서 그리고 생체내에서 펩티드의 인산화를 억제함으로써 골의 재흡수를 저해하였다. 그리고 자하거는 생쥐에서 $IL-1{\beta}$에 의해 유발된 고칼슘혈증을 감소시켰고, 골의 재흡수를 저해하는 경로를 통하여 골에 대한 보호효과를 보여줌으로써 조기에 난소 절제한 쥐에서 골질감소와 미세구조적 변화를 부분적으로 방지하였다. 이러한 결과는 PGE2 생성에 대한 $IL-1{\beta}$, $TNF-{\alpha}$, IL-6사이의 상승효과는 COX-2의 유전자 발현이 증가한 결과이며 이러한 tyrosine kinase가 생쥐의 두개골 골모세포에서 COX-2의 신호전달에 관계한다는 것을 보여준다. Conclusion: 자하거가 생쥐의 두개골 골모세포에서 여러 신호전달물질의 활성화를 통하여 골질재흡수를 저해하는 특성을 확인함으로써 앞으로 골다공증의 예방과 치료에 대한 추가적인 임상연구가 필요할 것으로 사료된다.

  • PDF

Effect of Dietary Calcium on Cell Proliferation and Colonic Mucosal Levels of Eicosanoid and 1,2-diacylglycerol in Colon Carcinogenesis of Rats (쥐에서 식이 Calcium이 대장 암화관정의 세포증식과 대장점막의 Eicosanoid 및 1,2 -diacylglycerol 수준에 미치는 영향)

  • 김채종
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • The objective of this study was to observe the effect of dietary calcium(Ca) level on colonic mucosal levels of cell proliferation, 1, 2-diacylglycerol(DAG), TXB2, PGE2 and phospholipid fatty acid composition which have been known as biomarkers for colon cancer. One hundred male Sprague Dawley rats, at 7 weeks of age, were divided into two fat type groups. Each group of which was further divided into two Ca level groups. Each rt was intramuscularly injected with 1, 2,-dimenthylhydrazine(DMH) for 6 weeks (total dose of 180mg/kg body weight) and simultaneously fed one of four experimental diets containing 15% dietary fat(corn oil or perilla oil )and 0.3% or 1.0% Ca by weight for 20 weeks. Compared to corn oil, perilla oil significantly reduced cell proliferation by decreasing labeling index, proliferating zone, crypt length in colonic mucosa and colonic mucosa and colonic mucosal levels of DAG, TXB2 . PGE2 and phospolipid (PL) arachidonic acid distribution. The effect of Ca on biomarketrs was different depending on the type of dietary fat comsumed . Ca effect of Ca on biomarkers was different depending on the type of dietary fat comsumed. Ca effect was not significantly shown in the PO group, but it was significant in the CO group in which high Ca(1.0%) decreased the levels of levels of PL-C20 : 4(%), DAG and PGE2 . However , high Ca supplementation had shown only the trends of improving cell proliferation. Overall , high dietary Ca significantly reduced cell proliferation by inhibiting the synthesis of eicosanoid and DAG with reduced distribution of PL-C20 : 4 , which may have resulted in lower activation of PKC through reduced signal transduction. Since a high level of dietary Ca was more effective in reducing the risk factor against colon cancer in corn oil fed rats, it could be suggested that a higher amount of dietary Ca be consumed , especially when more vegetable oil rich in linoleic acid is included in the diet.

  • PDF

Comparative Study on Chemical Composition and Biological Activities of Samchulkunbi-tang Decoction and Commercial Herbal Medicine (삼출건비탕 전탕액과 시판 한약제제의 비교 연구)

  • Kim, Ohn Soon;Seo, Chang-Seob;Kim, Yeji;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the differences of chemical composition or biological activities between decoction and commercial herbal medicines of Samchulkunbi-tang (Shenzhujianpi-tang, SKT). Methods : The extracts of SKT from decoction (SKT1) and two different commercial extractive granules (SKT2 and SKT3) were prepared. The index components of SKTs were analyzed with HPLC. The antioxidant activities of SKTs were studied by measuring free radical scavenging activities on ABTS and DPPH. The anti-inflammatory effects were determined by measuring NO, $PGE_2$ and IL-6 in LPS-stimulated RAW 264.7 cells. Results : The contents of 7 components were 1.40-6.08 mg/g in SKT1, not detected-4.75 mg/g in SKT2, 0.03-1.46 mg/g in SKT3. The scavenging activities on ABTS and DPPH of herbal formulas were increased in dose-dependent manner (SKT1>SKT2>SKT3). SKT1 significantly inhibited $PGE_2$ and IL-6 production and SKT3 slightly inhibited $PGE_2$ production in LPS-stimulated RAW264.7 cells. SKT2 showed no inhibitory effects on production of inflammatory mediators such as $PGE_2$ and IL-6. Conclusions : These results demonstrate that the decoction of SKT has more strong anti-oxidant and anti-inflammatory effects than that of commercial herbal medicines consistent with the contents of index components.

Effects of Naetakcheongeum-san on Anti-inflammatory Activities in RAW 264.7 cells (내탁천금산(內托千金散)이 RAW 264.7 대식세포주에서 항염증 활성에 미치는 영향)

  • Kim, Tae-Jun;Kim, Yong-Min;Kim, Hee-Taek
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.31 no.1
    • /
    • pp.12-21
    • /
    • 2018
  • Objectives : Inflammation is one of the self-protective abilities against tissue injury, and it has clinical symptoms like redness, heat, swelling, pain, and loss of function. The purpose of this study is to examine inhibitory effects of Naetakchunkeum-san (NTCKS) on nitric oxide (NO), Prostaglandin E2 (PGE2), inducible NOS (iNOS), cyclooxygenase-2 (COX-2), and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), which play a major role in inflammatory response. Methods : The experiment was performed using Raw 264.7 cells pretreated with NTCKS extracts. Cell viability was determined by MTT assay. To evaluate anti-inflammatory effects of NTCKS, we examined NO and $PGE_2$ production in LPS-induced macrophages. We also investigated effects of NTCKS on iNOS, Cox-2, and ERK1/2 expression using western blot. Results : In MTT assay, no cytotoxicity of NTCKS (50, 100, 150, $200{\mu}g/ml$) on RAW 264.7 cell was found. LPS-induced NO production was decreased after treatment with NTCKS (150, $200{\mu}g/ml$)(p<0.05). $PGE_2$ was decreased after treatment with NTCKS (150, $200{\mu}g/ml$)(p<0.05). NTCKS inhibited LPS-induced expressions of iNOS and COX-2 in a dose-dependent manner. Increased phosphorylation of ERK1/2 by LPS was decreased by NTCKS in a dose-dependent manner. Conclusions : According to above experiments, NTCKS may be applied to inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, and inflammatory bowel disease.

Experience of Administering Oral Prostaglandin E1 for Failed Back Surgery Syndrome -A case report- (척추수술후증후군 환자에서 경구용 Prostaglandin E1에 의한 치료 경험 -증례보고-)

  • Lee, Hae Kwang;Woo, Seung Hoon;Lee, Woo Yong
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.101-103
    • /
    • 2006
  • Oral prostaglandin E1 (PGE1) is a medicine that is clinically applied during a treatment of patients suffering with vascular disease with chronic arterial obstruction because it has vasodilation and anti-platelet effects. The mechanisms of lumbosacral symptoms associated with spinal stenosis probably include vascular insufficiency with hypoxic injury to the cauda equina and the nerve roots. Thus, increasing the blood supply would be beneficial to improve the pathophysiologic condition. Several studies on the improvement of clinical symptoms of spinal stenosis by PGE1 treatment have been reported on. In this case, 47-year old female underwent posterior compression and posterolateral fusion with a cage at L2-4 due to L3 compression fracture, and she did not show improvement of the radiating pain of her right leg after the operation. Therefore, she received repetitive epidural catheterization and adhesiolysis, epidural block and physical therapy, but her symptoms deteriorated after temporary improvement. Finally, she was given PGE1 and the radiculopathy was completely improved, although some muscle weakness still remained.

Stability and Percutaneous Transport of Prostaglandin $E_1$ (프로스타글란딘 $E_1$의 안정성 및 경피흡수)

  • Shin, Dong-Suk;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.337-341
    • /
    • 1999
  • We have studied the stability and transdennal flux of prostaglandin $E_1\;(PGE_1)$ from various donor solutions through hairless mouse skin. Stability in HEPES buffer or in propylene glycol (PG) solution where enhancer (oleic acid (OA), propylene glycol monolaurate (PGML), transcutol (TC), ethanol (EtOH))s dissolved was investigated. $$PGE_1 was not stable in HEPES buffer. The concentration of $$PGE_1 decreased continuously for 7 days, and the degradation rate constant was $0.0028\;h^{-1}$, assuming first order reaction. The effect of current or penetration enhancer on the degradation was minimal. Percutaneous transport from HEPES buffer by passive or iontophoretic delivery without enhancer was close to nil. When OA or PGML was used together with PG, both passive and iontophoretic flux increased. PGML showed better enhancing effect than OA. Flux by cathodal delivery was about 2 times larger than that by passive delivery. Flux by anodal delivery was lower than that by passive delivery. TC and EtOH also increased the transdermal flux, but the effect was not as good as that observed when OA or PGML was used. These stability and flux data provide important information on how to formulate the patch, which will be the next step of this work, and on the polarity of current to use during iontophoresis.

  • PDF

Src Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyc1ooxygenase-2 Expression in Articular Chondrocytes via p38 Kinase-dependent Pathway

  • Yu, Seon-Mi;Lee, Won-Kil;Yoon, Eun-Kyung;Lee, Ji-Hye;Lee, Sun-Ryung;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.204-210
    • /
    • 2006
  • Background: Nitric oxide (NO) in articular chondrocytes regulates dedifferentiation and inflammatory responses by modulating MAP kinases. In this study, we investigated whether the Src kinase in chondrocytes regulates NO-induced dedifferentiation and cyclooxygenase-2 (COX-2) expression. Methods: Primary chondrocytes were treated with various concentrations of SNP for 24 h. The COX-2 and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ was determined by using a $PGE_2$ assay kit. Expression and distribution of p-Caveolin and COX-2 in rabbit articular chondrocytes and cartilage explants were determined by immunohistochemical staining and immunocytochemical staining, respectively. Results: SNP treatment stimulated Src kinase activation in a dose-dependent manner in articular chondrocytes. The Src kinase inhibitors PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine], a significantly blocked SNP-induced p38 kinase and caveolin-1 activation in a dose-dependent manner. Therefore, to determine whether Src kinase activation is associated with dedifferentiation and/or COX-2 expression and $PGE_2$ production. As expected, PP2 potentiated SNP-stimulated dedifferentiation, but completely blocked both COX-2 expression and $PGE_2$ production. And also, levels of p-Caveolin and COX-2 protein expression were increased in SNP-treated primary chondrocytes and osteoarthritic and rheumatoid arthritic cartilage, suggesting that p-Caveolin may playa role in the inflammatory responses of arthritic cartilage. Conclusion: Our previously studies indicated that NO caused dedifferentiation and COX-2 expression is regulated by p38 kinase through caveolin-1 (1). Therefore, our results collectively suggest that Src kinase regulates NO-induced dedifferentiation and COX-2 expression in chondrocytes via p38 kinase in association with caveolin-1.

Studies on the Anti-Inflammatory Effects of Clerodendron trichotomum Thunberg Leaves

  • Choi, Jung-Ho;Whang, Wan-Kyun;Kim, Hong-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.189-193
    • /
    • 2004
  • Clerodendron trichotomum Thunberg Leaves (CTL) have been used for centuries in Chinese folk medicine for their anti-inflammatory properties. We have studied the anti-inflammatory effects of CTL extracts in rats, mice and in Raw 264.7 cells. 1 mg/kg solutions of the 30% and 60% methanol extracts of CTL were used and a 1 mg/kg of indomethacin was used as a positive anti-inflammatory standard; these were then administrated to rats. Carrageenan was injected subcutaneously to induce hind paw edema in rats. The result of carrageenan-induced rat paw oedema showed that a 1 mg/kg of the 30%, and 60% methanol fraction of CTL and 1 mg/kg of indomethacin inhibited the hind paw edema by 19.5%, 23.0%, and 20.5% respectively. The effect of CTL on inflammation in mice by a capillary permeability assay was examined by detecting Evans blue leakage from capillaries after the intraperitoneal injection of acetic acid, a potent inflammatory stimulus. The 60% methanol fraction of CTL inhibited Evans blue dye leakage by 47.0%, which was 10% higher than that of the inhibition of 1 mg/kg of indomethacin. Also, the 60% methanol fraction of CTL suppressed the prostaglandin $E_2$ ($PGE_2$) generation in RAW 264.7 macrophage cells after treatment with lipopolysaccharide (LPS) by as much as the inhibition of 1 mg/kg of indomethacin and this led to the synthesis of $PGE_2$ by COX-2 induction. The inhibition of the carrageenan-induced rat paw oedema, vascular permeability and the $PGE_2$ generation demonstrates that the 60% methanol fraction of CTL contains a potent anti-inflammatory activity.

Effects of Catecholamine on the Fusion of Chick Embryo Myoblasts in vitro (鷄胚筋原細胞의 融合에 미치는 카테콜아민의 影響)

  • Kang, Man-Sik;Ha, Doo-Bong;Lee, Chung-Choo;Park, Yung-Chul;Hyockman Kwon
    • The Korean Journal of Zoology
    • /
    • v.27 no.2
    • /
    • pp.73-84
    • /
    • 1984
  • In order to investigate the effect of neurotransmitter on myoblast differentiation in vitro, the effects of dopamine and epinephrine on myoblast fusion and on the intracellular cAMP level in cultured myoblasts were examined. Dopamine $(3\\times10^{-5}M)$ and epinephrine $(3\\times10^{-5}M)$, when added at 34 hr after cell plating, markedly inhibited myoblast fusion, and dopamine was more potent than epinephrine. Both dopamine and epinephrine had no effect on intracellular cAMP level. At the same time, exogeneous dbcAMP, $PGE_1$, and aspirin were used to examine whether cAMP is involved in myoblast differentiation. dbcAMP $(1\\times10^{-4}M)$ inhibited myoblast fusion, whereas $PGE_1 (3\\times10^{-6}M)$ had no inhibitory effect, rather enhancing myoblast fusion. Aspirin, an inhibitor of PG synthetase, was shown to inhibit myoblast fusion. Possible mechanism by which dopamine or epinephrine at a specific concentration used inhibits myoblast fusion is discussed.

  • PDF

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo;Vo, Van Anh;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3219-3223
    • /
    • 2014
  • Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.