• 제목/요약/키워드: $O_2$ partial pressure

검색결과 488건 처리시간 0.029초

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Growth of the single and epitaxial MgO film on Fe(001)

  • Kim, Hi-Dong;Dugerjav, Otgonbayar;Seo, Jae-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.355-355
    • /
    • 2010
  • The epitaxial growth of MgO film on Fe(001) has been investigated by scanning tunneling microscopy (STM). After confirming the clean Fe(001)-c($2{\times}2$) substrate by STM, Mg was deposited at room temperature (RT) under $O_2$ partial pressure of $10^{-7}\;Torr$. The MgO was grown as clusters, not as an epilayer even after postannealing at $400^{\circ}C$, as shown in Figure (a). On the contrary, when Mg was deposited on Fe(001)-c($2{\times}2$) at RT and post-oxidized through exposing $O_2$ at partial pressure $10^{-7}\;Torr$, the thin-layered film with some clusters was formed. Extended-annealing at $400^{\circ}C$ reduced the cluster density, and finally the single and epitaxial MgO-c($2{\times}2$) film was formed on Fe(001)-c($2{\times}2$) as shown in Figure (b). This ultrathin MgO film formed on Fe is expected to be applied to many technological applications, such as catalysis, microelectronics, and magnetic devices.

  • PDF

Electrical and optical properties of Li & P co-doped ZnO thin film by PLD

  • Choi, Im-Sic;Kim, Don-Hyeong;Heo, Young-Woo;Lee, Joon-Hyung;Kim, Jeong-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.209-209
    • /
    • 2009
  • Fabrication of p-type ZnO has already proven difficult and usually inconsistent despite numerous worldwide efforts. Many research groups studied electrical and optical properties P, Li, As, N single doped ZnO thin film. In P-doped ZnO thin film, the reproducibility of p-type conduction with $P_2O_5$ as a dopant source was shown to be relatively poor. In this study, we made P single doped and Li & P co-doped ZnO target. To investigate electrical and optical properties of P single doped and Li & P co-doped ZnO thin film using $P_2O_5$ and $Li_3PO_4$ dopant source respectively was deposited by PLD. The growth temperature was changed 500, $700^{\circ}C$ and various oxygen partial pressure and post-annealing conditions was changed temperature, different gas ambient($O_2,N_2$). We investigate that how to change electrical and optical properties as function of growth temperature, oxygen partial pressure and post-annealing(RTA).

  • PDF

Thick Films of LaNiO3 Perovskite Structure Impregnated with In and Bi Oxides as Acetonitrile Sensor

  • Salker, A.V.;Choi, Nak-Jin;Kwak, Jun-Hyuk;Lee, Duk-Dong
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.298-302
    • /
    • 2004
  • Thick films of $LaNiO_{3}$ having perovskite structure impregnated with indium and bismuth oxides have been used as sensing material for acetonitrile ($CH_{3}CN$) gas. The sensor response for $CH_{3}CN$ is quite good with an excellent recovery for partial pressure from 3 ppm to 20 ppm between 200 and $250^{\circ}C$. $LaNiO_{3}$ alone has exhibited low response, but after impregnation of $In_{2}O_{3}$ and $Bi_{2}O_{3}$ have given increased sensitivity even with 3 ppm partial pressure of $CH_{3}CN$ at $200^{\circ}C$. It is assumed that $CH_{3}CN$ is undergoing oxidation reaction on surface of the film.

Processing of Tin Oxide Nanoparticles by Inert Gas Condensation Method and Characterization

  • Simchi, Abdolreza;Kohi, Payam
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.122-123
    • /
    • 2006
  • Tin oxide nanoparticles (n-SnO and $n-SnO_2$) were synthesized by the inert gas condensation (IGC) method under dynamic gas flow of oxygen and argon at various conditions. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) method were used to analysis the size, shape and crystal structure of the produced powders. The synthesized particles were mostly amorphous and their size increased with increasing the partial pressure of oxygen in the processing chamber. The particles also became broader in size when higher oxygen pressures were applied. Low temperature annealing at $320^{\circ}C$ in air resulted to crystallization of the amorphous n-SnO particles to $SnO_2$.

  • PDF

W를 첨가한 $\textrm{TiO}_2$의 미세구조 및 전기적 성질 (Microstructure and Electrical Properties of W-doped $\textrm{TiO}_2$)

  • 백승봉;이순일;김명호
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.57-64
    • /
    • 1999
  • The electrical conductivity of TiO$_2$ doped with 0.05~1.5mol% WO$_3$ was measured in the oxygen partial pressure range of 10\ulcorner~10\ulcorner atm and temperature range of 1100~130$0^{\circ}C$ to investigate the defect types and the electrical properties. The grain size and density were increased as the liquid phase was formed by the doped WO$_3$. The secondary phase and WO$_3$peaks at the sample doped up to 4.0 mol% were not detected from the XRD results. The data(log$\sigma$/logPo$_2$) over 110$0^{\circ}C$ were divided into the four regions. From these experimental results, we proposed the following defect regions. 1) Magneli phase(extended defect), 2) Reduced rutile region which is similar to the behavior of undoped rutile, 3) Nearly stoichiometric Ti\ulcornerW\ulcornerO$_2$region in which extra charge of W\ulcorner cation is expected to be compensated by an electron, 4) Overstoichiometric Ti\ulcornerW\ulcornerO\ulcorner region which is a metal deficiency not to be observed in pure TiO$_2$. The electrical conductivity of w-doped TiO$_2$ was influenced by the measuring temperature, oxygen partial pressure, and the dopig content.

  • PDF

Study on the change of performance of a-IGZO TFTs depending on processing parameters

  • 정유진;조경철;이재상;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.8-8
    • /
    • 2009
  • Thin-film transistors (TFTs) were fabricated using amorphous indium gallium zinc oxide (a-IGZO) channels by rf-magnetron sputtering at room temperature. We have studied the effect of oxygen partial pressure on the threshold voltage($V_{th}$) of a-IGZO TFTs. Interestingly, the $V_{th}$ value of the oxide TFTs are slightly shifted in the positive direction due to increasing $O_2$ ratio from 1.2 to 1.8%. The device performance is significantly affected by varying $O_2$ ratio, which is closely related with oxygen vacancies provide the needed free carriers for electrical conduction.

  • PDF

PLD법에 의한 YBCO Coated Conductor를 위한 다층 산화물 박막의 증착 조건 연구 (Study on deposition condition of multi-layer oxide buffer by PLD for YBCO Coated Conductor)

  • 신기철;고락길;박유미;정준기;최수정;;송규정;하홍수;김호섭
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2003
  • The multi-layer oxide buffer layer for the coated conductor was deposited on biaxially textured Ni substrates using pulsed laser deposition. Oxygen partial pressure, 4%$H_2$/Ar partial pressure, and deposition temperature were deposition variables investigated to find the optimum deposition conditions. $Y_2$O$_3$seed layer was deposited epitaxially on metal substrate. The full buffer architecture of $Y_2$O$_3$/YSZ/CeO$_2$was successfully prepared on metal substrate.

  • PDF

$YMnO_3$ 강유전 박막의 열처리 분위기가 결정화거동과 전기적 특성에 미치는 영향 (Effects of Annealing Atmosphere on Crystallization and Electrical Properties in $YMnO_3$ Ferroelectric Thin Films)

  • 윤귀영;김정석;천채일
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.168-173
    • /
    • 2000
  • YMnO3 thin films were prepared on Pt/Ti/SiO2/Si substrate by chemical solution deposition method. The films were crystallized by heat-treatment at 85$0^{\circ}C$ for 1 hour. Effects of an annealing atmosphere(O2, Ar, vacuum) on the crystallization behavior and electridcal properties were investigated. YMnO3 thin films annealed under Ar atmosphere showed a superior crystallinity and a very strong c-aix preferred-orientation which was a polar axis. Leakage current density of the films decreased with lowering oxygen partial pressure of the annealing atmosphere. C-V and P-E ferroelectric hysteresis were observed only in the thin film heat-treated under Ar atmosphere.In order to prepare YMnO3 thin films having both low leakage current and ferroelectricity, the annealing atmsphere should be kept under a proper oxygen partial pressure which was about 1 Pa in this work. Leakage current density at 1 volt, dielectric constant($\varepsilon$r), remanent polarization(Pr), and coercive field(Ec) were 1.7$\times$10-8 A/$\textrm{cm}^2$, 25, 1.08$\mu$C/$\textrm{cm}^2$, and 100 kV/cm, respectively.

  • PDF