• 제목/요약/키워드: $Nd_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$

Search Result 5, Processing Time 0.021 seconds

Microstructure of the (Nd/Y)-Ba-Cu-O superconductors by floating zone melt growth process (부유대역용융성장법을 이용한 (Nd/Y)-Ba-Cu-O계 초전도체의 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • $(Nd/Y)_{1.8}Ba_{}2.4Cu_{3.4}O_{7-x}$high $T_c$ superconductor was directionally grown by floating Bone melt growth process with a large temperature gradient in air. Cylindrical green rods of (Nd/Y)1.8 oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Microstructures were observed by SEM and TEM and superconducting properties were measured by a SQUID magnetometer. Nonsuperconducting $(Nd/Y)_2BaCuO_5$ inclusions were uniformly distributed within the superconducting $(Nd/Y)Ba_2Cu_3O_x$ matrix. The directionally melt-textured (Nd/Y) 1.8 superconductor showed an onset Tc $\geq$ 90 K and a sharp superconducting transition.

Crystal growth and transport current properties of cylindrical (YSmNd)-Ba-Cu-O superconductors by zone melt growth method (존멜팅법을 이용한 원통형 (YSmNd)-Ba-Cu-O계 초전도체의 결정성장 및 수송 전류 특성)

  • Kim, So-Jung;Park, Jong-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.199-204
    • /
    • 2011
  • $(YSmNd)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$ [(YSN)1.8] high $T_c$ superconductor was directionally grown by zone melt growth process, in air atmosphere. In this study, optimum melting temperature and growth rate were $1100^{\circ}C$ and 3.5 mm/hr, respectively. The microstructure of well-textured (YSN)1.8 samples were examined by XRD, optical microscopy, TEM and SQUID magnetometer. The critical current density of these samples were measured by the direct transporting current method. In the observation using an optical microscopy, nonsuperconducting $(YSmNd)_2BaCuO_5$[(YSN)211] inclusions of (YSN)1.8 superconductor uniformly distributed within the superconducting (YSmNd)$Ba_2Cu_3O_x$[(YSN)123] matrix. The directionally melt-textured (YSN)1.8 superconductor showed an onset $T_c{\geq}90\;K$ and sharp superconducting transition. The transport $J_c$ values were 830 A and $3.93{\times}10^4$ (A/$cm^2$) at 77 K self-field, respectively.

Microstructure and Superconducting Properties of (Sm/Y)-Ba-Cu-O Superconductor by Rod-type Seed Melt Growth (Rod-type 종자결정성장법을 이용한 (Sm/Y)-Ba-Cu-O계 초전도체의 미세구조 및 초전도특성)

  • 김소정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2003
  • (Sm/Y)$_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$ [(Sm/Y)1.8] high $T_{c}$ superconductors were directionally grown by Rod-type Seed Melt Growth(RSMG) process in air atmosphere. The sintered polycrystalline N $d_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$(Nd1.8) of rod-type seed crystal grown by extrusion mold process were used for achieving the ab-plane alignment haying large grains perpendicular to the center of (Sm/Y)1.8 samples. The observations using TEM micrographs of the melt-textured (Sm/Y)1.8 samples revealed that the nonsuperconducting (Sm/Y)211 inclusions are uniformly distributed in the superconducting (Sm/Y)123 matrix. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The RSMG (Sm/Y)1.8 samples showed an onset $T_{c}$ $\geq$ 90 K and sharp superconducting transition.nsition.ion.nsition.

Melt Textured Growth and Superconducting Properties of RE3+ Elements Doped YBCO Superconductors (RE3+원소가 첨가된 YBCO고온초전도체의 용융성장 및 초전도 특성)

  • 김소정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 2003
  • RE(Nd, Sm) elements doped (RE/Y)$_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$ [(RE/Y)1.8] high $T_{c}$ superconductors were directionally grown by Top Seed Melt Growth(TSMG) process in air atmosphere. The (001)melt-textured N $d_{1.8}$B $a_{2.4}$C $u_{3.4}$ $O_{7-X}$(Nd1.8) seed crystals were used for achieving the c-axis alignment large grains perpendicular to surface of the samples. The (RE/Y)1.8 SEM micrographs of the melt-textured (RE/Y)1.8 samples revealed that the nonsuperconducting (RE/Y)211 inclusions are uniformly distributed in the superconducting (RE/Y)123 matrix except the region very close to the Nd seed crystal. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The Melt-textured (RE/Y)1.8 samples showed an onset $T_{c}$=91K and sharp superconducting transition. Also, the magnetization value of the (RE/Y)1.8 samples were compared with those of Y1.8 sample at 77 K. 77 K. 77 K. 77 K.K.

High Functional $GdB_2C_3O_{7-x}$ Thin Films Fabricated by Pulsed Laser Deposition

  • Song, S.H.;Ko, K.P.;Song, K.J.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.15-18
    • /
    • 2006
  • REBCO coated conductors (RE: rare earth elements) have recently drawn great attention since they are known to possess stronger flux pinning centers in high magnetic fields compared with YBCO coated conductors. In this study, $GdBa_2Cu_3O_{7-d}(GdBCO)$ was selected to investigate the influence of the distance between target and substrate and substrate temperature on the superconducting properties of GdBCO films on the $SrTiO_3(100)$ substrate. Samples were fabricated by pulsed laser deposition (PLD) with a Nd:YAG laser (355nm). Under a given oxygen pressure of 800mTorr, we changed the distance between target and substrate from 5.5cm to 7.0cm and the substrate temperature from $750^{\circ}C\;to\;850^{\circ}C$. The crystallinity and texture of GdBCO films were analyzed by X-ray diffraction (XRD), and the surface morphology was observed by the scanning electron microscopy (SEM). Tc and Jc values were measured by the four point probe method. High quality GdBCO films with Tc of 89.7K and Jc over $1MA/cm^2$ at 77 K in self field were successfully fabricated by optimizing processing parameters. The detailed processing conditions, microstructure and superconducting properties will be presented for a discussion.