• Title/Summary/Keyword: $Nd:YVO_4$ Laser

Search Result 47, Processing Time 0.026 seconds

Development of a Hybrid DPSSL with a Pulse Parameter Variable LD Seed (광펄스 파라미터 가변 LD를 이용한 복합형 DPSSL 개발)

  • Noh, Young-Chul;Shin, Woo-Jin;Yu, Bong-Ahn;Lee, Yeung-Lak;Jung, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.7-13
    • /
    • 2010
  • We report a hybrid DPSSL with a pulse parameter variable LD seed, all-fiberized polarization-maintained pulsed Yb-doped fiber preamplifier chains, and a bulk Nd:$YVO_4$ power amplifier. Pulse parameter of LD seed was controlled by direct current modulation. The hybrid DPSSL generates 1064 nm laser pulses with an average power of 40W, a pulse duration of 20-40ns, and a repetition rate of 100-500kHz.

Practical application of picosecond laser micro-machining to the direct fabrication of a diffraction grating mold (피코초 레이저를 이용한 회절 격자 금형 개발)

  • Noh Ji-Whan;Lee Jae-Hoon;Sohn Hyon-Kee;Suh Jeong;Shin Dong-Sig
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.487-488
    • /
    • 2006
  • Picosecond (ps) laser micro-machining has emerged as an attractive method of fabricating high-precision microstructures, especially in metals. In this paper, a metallic mold for diffraction gratings is fabricated with a mode-locked 12 Ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate line patterns. In order to minimize the line width, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

Fabrication of Diffraction Grating Mold Using Dot Pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Young-Un
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps Nd:YVO4 laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application

  • PDF

Fabrication of diffraction grating mold using dot pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Youn-Gun
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.114-117
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps $Nd:YVO_4$ laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Characteristics of Double Texturization by Laser and Reactive Ion Etching for Crystalline Silicon Solar Cell (레이저를 이용한 결정질 실리콘 태양전지의 Double Texturing 제조 및 특성)

  • Kwon, Jun-Young;Han, Kyu-Min;Choi, Sung-Jin;Song, Hee-Eun;Yoo, Jin-Soo;Yoo, Kwon-Jong;Kim, Nam-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.649-653
    • /
    • 2010
  • In this paper, double texturization of multi crystalline silicon solar cells was studied with laser and reactive ion etching (RIE). In the case of multi crystalline silicon wafers, chemical etching has problems in producing a uniform surface texture. Thus various etching methods such as laser and dry texturization have been studied for multi crystalline silicon wafers. In this study, laser texturization with an Nd:$YVO_4$ green laser was performed first to get the proper hole spacing and $300{\mu}m$ was found to be the most proper value. Laser texturization on crystalline silicon wafers was followed by damage removal in acid solution and RIE to achieve double texturization. This study showed that double texturization on multi crystalline silicon wafers with laser firing and RIE resulted in lower reflectance, higher quantum yield and better efficiency than that process without RIE. However, RIE formed sharp structures on the silicon wafer surfaces, which resulted in 0.8% decrease of fill factor at solar cell characterization. While chemical etching makes it difficult to obtain a uniform surface texture for multi crystalline silicon solar cells, the process of double texturization with laser and RIE yields a uniform surface structure, diminished reflectance, and improved efficiency. This finding lays the foundation for the study of low-cost, high efficiency multi crystalline silicon solar cells.

Efficient Single-Pass Optical Parametric Generation and Amplification using a Periodically Poled Stoichiometric Lithium Tantalate

  • Yu, Nan-Ei;Lee, Yong-Hoon;Lee, Yeung-Lak;Jung, Chang-Soo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.192-195
    • /
    • 2007
  • A high-conversion efficiency, nanosecond pulsed optical parametric generation and amplification with repetition rate of 20 kHz based on a periodically poled MgO-doped stoichiometric lithium tantalate was presented. Pumped by a Q-switched $Nd:YVO_4$ laser at 1064 nm with a pumping power of 4.8W, the generated output power was 1.6W for the signal and idler waves, achieving a slope efficiency of 50%. Using a seed source at signal wave the amplified signal output-pulse energy reached $65{\mu}J$. The obtained maximum gain was 72.4 dB.