• Title/Summary/Keyword: $Nb_2O_5/SiO_2$ 버퍼층

Search Result 3, Processing Time 0.016 seconds

Electrical and Optical Properties of ITO Thin Films with Various Thicknesses of SiO2 Buffer Layer for Capacitive Touch Screen Panel (정전용량식 터치스크린 패널을 위한 SiO2 버퍼층 두께에 따른 ITO 박막의 전기적 및 광학적 특성)

  • Yeun-Gun, Chung;Yang-Hee, Joung;Seong-Jun, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1069-1074
    • /
    • 2022
  • In this study, we prepared ITO thin films on the Nb2O5/SiO2 double buffer layer and investigated electrical and optical properties according to the change of SiO2 buffer layer thickness (40~50nm). The ITO thin film fabricated on the Nb2O5/SiO2 double buffer layer exhibited a broad surface roughness with a small value ranging of 0.815 to 1.181nm, and the sheet resistance was 99.3 to 134.0Ω/sq. It seems that there is no problem in applying the ITO thin film to a capacitive touch screen panel. In particular, the average transmittance in the short-wavelength (400~500nm) region and the chromaticity (b*) of the ITO thin film deposited on the Nb2O5(10nm)/SiO2(40nm) double buffer layer showed significantly improved results as 83.58% and 0.05, respectively, compared to 74.46% and 4.28 of ITO thin film without double buffer layer. As a result, it was confirmed that optical properties such as transmittance in the short-wavelength region and chromaticity were remarkably improved due to the index matching effect in the ITO thin film with the Nb2O5/SiO2 double buffer layer.

Effect of Substrate Temperature on the Optical and Electrical Properties of ITO Thin Films deposited on Nb2O5/SiO2 Buffer Layer (기판온도가 Nb2O5/SiO2 버퍼층위에 증착한 ITO 박막의 광학적 및 전기적 특성에 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.986-991
    • /
    • 2016
  • In this study, we prepared ITO thin films on $Nb_2O_5/SiO_2$ double buffer layer using DC magnetron sputtering method and investigated electrical and optical properties with various substrate temperatures (room temperature ~ $400^{\circ}C$). The resistivity showed a decreasing tendency, because crystallinity has been improved due to the enlarged grain size with increasing substrate temperature. ITO thin film deposited at $400^{\circ}C$ showed the most excellent value of resistivity and sheet resistance as $3.03{\times}10^{-4}{\Omega}{\cdot}cm$, $86.6{\Omega}/sq.$, respectively. In results of optical properties, average transmittance was increased but chromaticity ($b^*$) was decreased in visible light region (400~800nm) with increasing substrate temperature. Average transmittance and chromaticity ($b^*$) of ITO thin film deposited at $400^{\circ}C$ exhibited significantly improved results as 85.8% and 2.13 compared to 82.8% and 4.56 of the ITO thin film without buffer layer. Finally, we found that ITO thin film introduced $Nb_2O_5/SiO_2$ double buffer layer has a remarkably improved optical property such as transmittance and chromaticity due to the index matching effect.

Fabrications and properties of MFIS structure using AIN buffer layer (AIN 버퍼층을 사용한 MFIS 구조의 제작 및 특성)

  • 정순원;김용성;이남열;김진규;정상현;김광호;유병곤;이원재;유인규
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.29-32
    • /
    • 2000
  • Meta1-ferroelectric-insulator-semiconductor(MFIS) devices using Pt/LiNbO$_{3}$/AIN/Si structure were successfully fabricated. AIN thin films were made into metal-insulator-semiconductor(MIS) devices by evaporating aluminum in a dot array on the film surface. The dielectric constant of the AIN film calculated from the capacitance in the accumulation region in the capacitance-voltage(C-V ) characteristic is 8. The gate leakage current density of MIS devices using a aluminum electrode showed the least value of 1$\times$10$^{-8A}$ $\textrm{cm}^2$ order at the electric field of 500㎸/cm. A typica] value of the dielectric constant of MFIS device was about 23 derived from 1MHz capacitance-voltage (C-V) measurement and the resistivity of the film at the field of 500㎸/cm was about 5.6$\times$ 10$^{13}$ $\Omega$.cmcm

  • PDF