• Title/Summary/Keyword: $Nb_{2}O_{5}$addition

Search Result 190, Processing Time 0.023 seconds

Effect of $Nb_2O_5$ and $UO_2$ Powder Types on Sintered Density and Grain Size of the $UO_2$ Pellet

  • Yoo, Ho-Sik;Kim, Hyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.196-200
    • /
    • 1997
  • The variation of sintered density and fain size in ex-AUC, ex-ADU and granulated ex-ADU UO$_2$ pellets in which 0.1~1.0wt% Nb$_2$O$_{5}$ were doped were examined. Pellets were sintered in an atmosphere of H$_2$ at 1$700^{\circ}C$ for 4h. All the specimens tested shooed more than 94% T.D.(Theoretical Density). Sintered density decreased with increasing the amount of Nb$_2$O$_{5}$. Powder types had little influence on the sintered density. Pore size distribution was shifted to the larger ones as Nb$_2$O$_{5}$ was added. The increase of total pore volume and grain growth due to the addition of Nb$_2$O$_{5}$ were thought to be the cause of the sintered density decrease. The largest grain size was seen in the 1. 0wt% Nb$_2$O$_{5}$ doped ex-AUC UO$_2$ pellets. Their average size was 13.9 ${\mu}{\textrm}{m}$.m}$.

  • PDF

Effect of $({Zn}_{1/3}{Nb}_{2/3}){O}_{2}$ Addition on the phase changes and dielectric properties of ${BaTiO}_{3}-{3TiO}_{2}$ceramics ($({Zn}_{1/3}{Nb}_{2/3}){O}_{2}$의 첨가가 세라믹스의 상변화 및 유전특성에 미치는 영향)

  • 김상근;박찬식;변재동;김경용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.8
    • /
    • pp.1068-1074
    • /
    • 1995
  • Effect of (Zn$_{1}$3/Nb$_{2}$3/) $O_{2}$ addition on the phase changes and microwave dielectric properties of BaTi $O_{3}$-3Ti $O_{2}$ ceramics were investigated. Addition of (Zn$_{1}$3/Nb$_{2}$3/) $O_{2}$ to BaTi $O_{3}$-3Ti $O_{2}$ resulted in the formation of Ba $Ti_{4}$$O_{9}$, $Ba_{2}$ $Ti_{9}$ $O_{20}$, Ba(Zn$_{1}$3/Nb$_{2}$3/) $O_{3}$, and Ti $O_{2}$ phases. Ba $Ti_{4}$$O_{9}$ phase was gradually transformed to $Ba_{2}$ $Ti_{9}$ $O_{20}$. This was identified by XRD and microstructure. As the Ba $Ti_{4}$$O_{9}$ phase transformed to $Ba_{2}$ $Ti_{9}$ $O_{20}$ phase, the dielectric constant increased to 37.5. Q*f$_{o}$ value was 40000 at x=0.04, and the temperature coefficient of resonant frequency was +10ppm/.deg. C.C.. C.C.

  • PDF

Stbilization of Perovskite Phase and Enhanced DPT Characteristics of $Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$ Ceramics by the Additionof Excess Constituent Oxides ($Pb(Zn, Mg)_{1/3}Nb_{2/3}O_3-PbTiO_3$계에서 구성 산화물 첨가에 따른 Perovskite상 안정화 및 DPT성 증대 효과)

  • 이규만;장현명;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.925-932
    • /
    • 1993
  • The perovskite phase in PZN-PMN-PT (Pb(Zn, Mg)1/3Nb2/3O3-PbTiO3) pseudoternary ceramics was stabilized by the addition of excess constituent divalent oxides (PbO, MgO and ZnO). The excess addition of 5mol% MgO or 7.5mol% PbO fully stabilized the perovskite phase. The enhanced diffuse phase transition (DPT) and the decrease in the electrical resistivity observed in the presence of excess ZnO or MgO were interpreted in terms of the additional formation of negatively charged, short-range ordered 1:1 domains with a concomitant generation of charge carriers, holes.

  • PDF

Effect of $MnO_2$ Addition on the Electric Properties in Pb($Mg_{1/3}Nb_{2/3}$)$O_3$ Relaxor Ferroelectrics ($MnO_2$ 첨가에 따른 Pb($Mg_{1/3}Nb_{2/3}$)$O_3$계 완화형 강유전체에서의 전기적 물성변화)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.562-566
    • /
    • 2001
  • The effects of MnO$_2$ addition on the properties in Pb(Mg$_{1}$3/Nb$_{2}$3/)O$_3$ relaxor ferroelectrics were studied in the phase transition temperature range from -4$0^{\circ}C$ to 11$0^{\circ}C$. Specimens were made via solid state processing method. Dielectric properties, piezoelctric properties, electric-field-induced strain were examined to clarify the effect of MnO$_2$ addition in 0.9MN-0.1PT. As the amount of MnO$_2$ increases, the maximum dielectric constant and the dielectric loss decreases. Q$_{m}$ increased by increasing the doping contents of Mn. When 0.5wt% MnO$_2$ was doped, Q$_{m}$ increased from 95 to 480. The electric-filed-induced strain and polarization decreases as the amount of MnO$_2$ increases. From the experimental results, it was suggested that Mn behaves as an ferroelectric domain pinning element.ent.

  • PDF

(1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$ 무연 압전세라믹스의 첨가물질에 따른 전기적 특성 평가

  • U, Deok-Hyeon;Ryu, Seong-Rim;Yun, Man-Sun;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.260-260
    • /
    • 2007
  • 강유전성 세라믹스 재료로써는 PZT계열의 세라믹재료가 널리 쓰이고 있다. 이는 우수한 유전 및 압전특성을 가지고 있으나, PbO을 다량 함유하고 있어 $1000^{\circ}C$이상에서 PbO가 급격하게 휘발되는 성질에 따라서 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 과잉 PbO를 첨가시키기 때문에 PbO휘발로 인한 강한 독성이 인체에 유해하다. 최근에는 Pb의 환경문제가 대두됨에 따라 이를 대체할 다른 물질의 개발이 활발하게 연구되고 있다. 대표적인 비납계 강유전 세라믹스인 $(Na_{0.5}K_{0.5})NbO_3$ ($d_{33}$ = 120 pC/N, Kp = 39%, Qm = 210, 이하 NKN라 표기) 조성은 $KNbO_3,\;NaNbO_3$ 상태도에 따라 순수한 NKN 세라믹스는 $1140^{\circ}C$에서 안정상을 가지나, 높은 온도로 인하여$Na_2O$$K_2O$가 쉽게 휘발됨에 따라 화학량 비의 변화가 생겨 이차 상을 형성하기도 한다. 따라서 본 연구에서는 $LiNbO_3$의 새로운 고용체를 추가시켜 기본 NKN조성에 압전성 및 고온에서의 상안정성을 향상시키고자 하였다. 최적 조성을 설계하기 위하여 (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, x=(0,0.02,0.04,0.06,0.08)의 범위에서 조성을 변화시키면서 실험하였다. 시편 제작은 일반적인 세라믹스 소결 공정을 적용하였는데, $850^{\circ}C$에서 5시간 하소 후 $1080^{\circ}C$에서 2시간 소결하였다. 하소 및 소결 후에는 XRD분석을 통해 perovskite구조를 확인하였고, 미세구조 확인을 위해 주사전자현미경 (SEM)으로 관찰하였다. 압전특성을 평가하기 위해 압전 $d_{33}$-meter를 사용하였으며, impedance analyzer (HP 4194A)를 이용하여 전기적 특성을 측정하였다.

  • PDF

Influence of PVP on the Thickness of Ferroelectric (Na,K)NbO3 Film by Sol-Gel (솔-젤 법을 통해 제조된 강유전체 (Na,K)NbO3 막의 두께에 미치는 PVP의 영향)

  • Kim, Dae-Gun;Yoo, In-Sang;Kim, Sae-Hoon;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.696-700
    • /
    • 2012
  • (Na, K) $NbO_3$ thick film was successfully achieved using a sol-gel coating process with the addition of polyvinylpyrrolidone (PVP) to a metal alkoxide solution. The transparent coating solution, mixed with Nb:PVP = 1:1 in a molar ration, was synthesized by evaporating the solvent to over 62.5 wt%. Additive PVP increased the viscosity of the solution so that the coating thickness could be enhanced. The thickness of the (Na, K) $NbO_3$ film assisted by PVP was ca. 320 nm at the time of deposition; this value is four times thicker than that of the sample fabricated without PVP. Also, due to PVP binding with the OH groups of the metal alkoxide, the condensation reaction in the film was suppressed. The crystalline size of the (Na, K) $NbO_3$ films assisted by PVP was ca. 15 nm smaller than that of the film fabricated without PVP. After the sintering process at $700^{\circ}C$, the (Na, K) $NbO_3$ films were mainly composed of randomly oriented (Na, K) $NbO_3$ phase of perovskite crystal structure, including a somewhat secondary phase of $K_2Nb_4O_{11}$. However, by adding PVP, the content of the secondary phase became quite smaller than that of the sample without PVP. It was thought that the addition of PVP might have the effect of restraining the loss of potassium and that PVP could hold metalloxane by strong hydrogen bonding before complete decomposition. Therefore, the film thickness of the (Na, K) $NbO_3$ films could be considerably advanced and made more crack-free by the addition of PVP.

Effect of Bi4Zr3O12 on the properties of (KxNa1-x)NbO3 based ceramics

  • Mgbemere, Henry. E.;Akano, Theddeus T.;Schneider, Gerold. A.
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.93-105
    • /
    • 2016
  • KNN-based ceramics modified with small amounts of $Bi_4Zr_3O_{12}$ (BiZ) has been synthesized using high-throughput experimentation (HTE). The results from X-ray diffraction show that for samples with base composition $(K_{0.5}Na_{0.5})NbO_3$ (KNN), the phase present changes from orthorhombic to pseudo-cubic with more than 0.2 mol% BiZ addition; for samples with base composition $(K_{0.48}Na_{0.48}Li_{0.04})(Nb_{0.9}Ta_{0.1})O_3$ (KNNLT), the phase present changes from a mixture of orthorhombic and tetragonal symmetry to pseudo-cubic with more than 0.4 mol % while for samples with base composition $(K_{0.48}Na_{0.48}Li_{0.04})(Nb_{0.86}Ta_{0.1}Sb_{0.04})O_3$ (KNNLST), the phase present is tetragonal with <0.3 mol% BiZ addition and transforms to pseudo-cubic with more dopant addition. The microstructures of the samples show that addition of BiZ decreases the average grain size and increases the volume of pores at the grain boundaries. The values of dielectric constant for KNN and KNNLT compositions increase slightly with BiZ addition while that for KNNLST decreases gradually with BiZ addition. The dielectric loss values are between 0.02 and 0.04 for KNNLT and KNNLST compositions while they are ~ 0.05 for KNN samples. The resistivity values increases with BiZ addition and values in the range of $10^{10}{\Omega}cm$ and $10^{12}{\Omega}cm$ are obtained. The piezoelectric charge coefficient ($d{^*}_{33}$) is highest for KNNLST samples and decreases gradually from ~400 pm/V to ~100 pm/V with BiZ addition.

The Microwave Dielectric Properties of Low-Temperature Sintered $ZnNb_2O_6$ Ceramics with Addition (첨가물에 따른 저온소결형 $ZnNb_2O_6$ 세라믹스의 마이크로파 유전특성)

  • Kim, Jung-Hun;Kim, Jae-Sik;Kim, Ji-Heon;Lee, Moon-Kee;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • The $ZnNb_2O_6$ ceramics with 3wt% CuO and $B_2O_2$(1,3,5wt%) were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of $1000^{\circ}C\sim1050^{\circ}C$ for 3hr. in air. The structural properties were investigated with sintering temperature by XRD and SEM. Also, the microwave dielectric properties were investigated with sintering temperature. Increasing the sintering temperature, the peak of second phase ($Cu_3Nb_2O_8$) was increased. But no significant difference was observed as sintering temperature. In the $ZnNb_2O_6$ ceramics with 3wt% CuO and 5wt% $B_2O_3$ sintered at $1025^{\circ}C$ for 3hr, the dielectric constant, quality factor, temperature coefficient of the resonant frequency were 22.92, 20,271GHz, -14.27ppm/$^{\circ}C$, respectively.

  • PDF

Effect of MoO3 Addition and Their Frequency Characteristics in Nb+5 doped Semiconductive BaTiO3 Ceramics (Nb+5첨가된 반도성 BaTiO3세라믹스에서 MoO3의 영향과 주파수 특성)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Effect of MoO3 additiion on the semiconductive BaTiO3 ceramics doped with 0.2 mole% Nb2O5 and their frequency characteristics have been investigated on the view of intergranular barrier layer model through the observation of changes in their electrical properties. The resistivity increases with the increase of MoO3 addition, but the capacitance, the frequency dependence of capacitance and the effect of positive temperature coefficient of resistivity (PTCR) decrease. It is explained by the possible increase in the thickness of potential barrier due to the formation of insulating layer and thus decrease in the degree of energy band bending. Both the PTCR effect and resistivity decrease with the increase of frequency due to the possible elimination of barrier layer at the grain boundary.

  • PDF

A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3 (Li2CO3 첨가에 따른 입방정 Bi1.5Zn1.0Nb1.5O7(c-BZN)의 상 변화 및 그에 따른 유전특성 변화 연구)

  • Yuseon Lee;Yunseok Kim;Seulwon Choi;Seongmin Han;Kyoungho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2023
  • A novel low-temperature co-fired ceramic (LTCC) dielectric, composed of (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4 (x=0.03-0.21), was synthesized through reactive liquid phase sintering of Bi1.5Zn1.0Nb1.5O7-xLi2CO3 ceramic at temperatures ranging from 850℃ to 920℃ for 4 hours. During sintering, Li2CO3 reacted with Bi1.5Zn1.0Nb1.5O7, resulting in the formation of Bi2Zn2/3Nb4/3O7, and LiZnNbO4. The resulting sintered body exhibited a relative sintering density exceeding 96% of the theoretical density. By altering the initial Li2CO3 content (x) and consequently modulating the volume fraction of Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7, and LiZnNbO4 in the final sintered body, a sample with high dielectric constant (εr), low dielectric loss (tan δ), and the temperature coefficient of dielectric constant (TCε) characterized by NP0 specification (TCε ≤ ±30 ppm/℃) was achieved. As the Li2CO3 content increased from x=0.03 mol to x=0.15 mol, the volume fraction of Bi2Zn2/3Nb4/3O7 and LiZnNbO4 in the composite increased, while the volume fraction of Bi1.5Zn1.0Nb1.5O7 decreased. Consequently, the dielectric constant (εr) of the composite materials varied from 148.38 to 126.99, the dielectric loss (tan δ) shifted from 5.29×10-4 to 3.31×10-4, and the temperature coefficient of dielectric constant (TCε) transitioned from -340.35 ppm/℃ to 299.67 ppm/℃. A dielectric exhibiting NP0 characteristics was achieved at x=0.09 for Li2CO3, with a dielectric constant (εr) of 143.06, a dielectric loss (tan δ) value of 4.31×10-4, and a temperature coefficient of dielectric constant (TCε) value of -9.98 ppm/℃. Chemical compatibility experiment with Ag electrode revealed that the developed composite material exhibited no reactivity with the Ag electrode during the co-firing process.