• Title/Summary/Keyword: $NaMgCl_3$ single crystal

Search Result 2, Processing Time 0.017 seconds

Nuclear Magnetic Resonance Study of 23Na in NaMgCl3 Single Crystal (NaMgCl3 단결정 내의 23Na 원자핵에 대한 핵 자기 공명 연구)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.185-188
    • /
    • 2015
  • We have investigated nuclear magnetic resonance of $^{23}Na$ nucleus in $NaMgCl_3$ single crystal in the temperature range 200 K~410 K using FT-NMR spectrometer. The spin-lattice relaxation times $T_1$ of $^{23}Na$ nucleus residing at cubic symmetry in the host crystal was measured as a function of temperature. The $T_1$ of $^{23}Na$ nucleus decreased with increasing temperature. The nuclear spin-lattice relaxation rate $1/T_1$ of $^{23}Na$ in $NaMgCl_3$ single crystal was proportional to the temperature T. This behavior is explained with the characteristic feature of the direct process between the nuclear spins and single phonon, $1/T_1$ being proportional to the absolute temperature. The activation energy calculated was $E_a=4.82J/mol$.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF