• Title/Summary/Keyword: $Na^+/K^+{\

Search Result 21,871, Processing Time 0.05 seconds

The Effects of Salt and $NaNO_2$ on Physico-Chemical Characteristics of Dry-cured Ham (소금과 아질산염 처리수준에 따른 건염햄의 이화학적 특성)

  • Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soo-Hyun;Lee, Chang-Hyun;Kang, Dong-Woo;Hah, Kyoung-Hee;Lim, Dong-Gyun;Park, Beom-Young;Kim, Dong-Hoon;Lee, Jong-Moon;Ahn, Chong-Nam
    • the MEAT Journal
    • /
    • s.36 summer
    • /
    • pp.61-71
    • /
    • 2009
  • The aim of this work was to analyze the effects of salt and NaNO2 on weight loss, proximate compositions, chemical parameters and texture characteristics of dry-cured ham processed using Korean methods. Four different treatments were considered: The H8 group of 3 hams (11.30 kg) was salted with 9.2 g/kg salt (w/w) (high salt batch), the HS+NaNO2 group of 3 hams (10.65 kg) was salted same as HS group and added 100 ppm NaNO2. The LS group of 3 hams (11.42 kg) was salted with 6.2 g/kg salt (w/w) (Low salt batch), the LS+NaNO2 group of 3 hams (10.62 kg) was salted same as L8 group and added 100 ppm NaNO2. The highest weight losses took place at the drying stage (27.46, 28.25, 26.99, and 28.42%). However, there were no significant differences in the weight losses between treatments (p>0.05). The moisture content was significantly affected with addition of NaNO2 (p<0.05), the L8 hams had significantly higher moisture content than HS + NaNO2 and L8 + NaNO2 (p<0.05). The level of salt and NaNO2 did not affect the fat, protein and ash contents. The hardness and chewiness in biceps femoris muscle from L8 hams were significantly lower than in the muscles from HS + NaNO2 hams (p<0.05). The NaNO2 did not affect the texture characteristics of dry-cured hams. The processing conditions significantly affected the chemical parameters of biceps femoris muscle (p<0.05). The water activity in biceps femoris muscle from L8 hams was significantly higher than in muscles from HS and H8+NaNO2 hams (p<0.04). The salt content in biceps femoris muscles from LS + NaNO2 hams was significantly lower than in the muscles from HS and HS + NaNO2 hams (p<0.05). The NaNO2 treatment did not affect the NaNO2 content in biceps femoris muscles (p>0.05). The processing conditions did not significantly affect the lightness (L), redness (a), and $h^{\circ}$ of biceps femoris muscles (p>0.05). The yellowness (b) and chroma in biceps femoris muscle from HS + NaNO2 hams were significantly higher than in the muscles from HS and LS hams.

  • PDF

The Effects of Salt and NaNO2 on Physico-Chemical Characteristics of Dry-cured Ham (소금과 아질산염 처리수준에 따른 건염햄의 이화학적 특성)

  • Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soo-Hyun;Lee, Chang-Hyun;Kang, Dong-Woo;Hah, Kyoung-Hee;Lim, Dong-Gyun;Park, Beom-Young;Kim, Dong-Hoon;Lee, Jong-Moon;Ahn, Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.493-498
    • /
    • 2008
  • The aim of this work was to analyze the effects of salt and $NaNO_2$ on weight loss, proximate compositions. chemical parameters and texture characteristics of dry-cured ham processed using Korean methods. Four different treatments were considered: The HS group of 3 hams (11.30 kg) was salted with 9.2 g/kg salt (w/w) (high salt batch), the HS+$NaNO_2$ group of 3 hams (10.65 kg) was salted same as HS group and added 100 ppm $NaNO_2$. The LS group of 3 hams (11.42 kg) was salted with 6.2 g/kg salt (w/w) (Low salt batch), the LS+$NaNO_2$ group of 3 hams (10.62 kg) was salted same as LS group and added 100 ppm $NaNO_2$. The highest weight losses took place at the drying stage (27.46, 28.25, 26.99, and 28.42%). However, there were no significant differences in the weight losses between treatments (p>0.05). The moisture content was significantly affected with addition of $NaNO_2$ (p<0.05), the LS hams had significantly higher moisture content than HS+$NaNO_2$ and LS+$NaNO_2$ (p<0.05). The level of salt and $NaNO_2$ did not affect the fat, protein and ash contents. The hardness and chewiness in biceps femoris muscle from LS hams were significantly lower than in the muscles from HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ did not affect the texture characteristics of dry-cured hams. The processing conditions significantly affected the chemical parameters of biceps femoris muscle (p<0.05). The water activity in biceps femoris muscle from LS hams was significantly higher than in muscles from HS and HS+$NaNO_2$ hams (p<0.05). The salt content in biceps femoris muscles from LS+$NaNO_2$ hams was significantly lower than in the muscles from HS and HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ treatment did not affect the $NaNO_2$ content in biceps femoris muscles (p>0.05). The processing conditions did not significantly affect the lightness (L), redness (a), and $h^{\circ}$ of biceps femoris muscles (p>0.05). The yellowness (b) and chroma in biceps femoris muscle from HS+$NaNO_2$ hams were significantly higher than in the muscles from HS and LS hams.

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

Behavior characteristics of hydrogen and its isotope in molten salt of LiF-NaF-KF (FLiNaK)

  • Zeng, Youshi;Liu, Wenguan;Liu, Wei;Qian, Yuan;Qian, Nan;Wu, Xiaoling;Huang, Yu;Wu, Shengwei;Wang, Guanghua
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.490-494
    • /
    • 2019
  • Experimental studies to investigate the behaviors of hydrogen in molten FLiNaK (LiF-NaF-KF) have been conducted at $500-700^{\circ}C$. On the basis of previous studies, the diffusivity and solubility of hydrogen in FLiNaK have been revised, and the expressions can be correlated to the following Arrhenius equations: $D_{H2}=1.62{\times}10^{-5}{\exp}(-48.20{\times}10^3/Rg{\cdot}T) m^2/s]$ and $S_{H2}=1.03{\times}10^{-4}{\exp}(-14.96{\times}10^3/Rg{\cdot}T) [mol-H_2/m^3/Pa]$, respectively. The behavior characteristics of deuterium in FLiNaK were studied and compared with the hydrogen behaviors in FLiNaK. The results showed the behaviors of deuterium were consistence with the behaviors of hydrogen in FLiNaK. The difference between hydrogen and deuterium has not been observed upon the experimental research of the behavior characteristics of hydrogen and deuterium in FLiNaK, which suggested the results obtained here might apply equally to the behavior characteristics of tritium in FLiNaK.

Effect of Rapid Rotating Shift Work on the Urinary $Na^+,K^+,Cl^-$ (빠른 교대근무가 요중 $Na^+,K^+,Cl^-$의 배설에 미치는 영향)

  • Min, Soon;Moon, Dae-Soo;Im, Wook-Bin
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.4
    • /
    • pp.869-880
    • /
    • 1998
  • In order to investigate of the effects of rapid rotating shift work on physiological stress, the activities of urinary Na$^{+}$, $K^{+}$, Cl$^{[-10]}$ were measured in 14 rotational shift nurses, during day shifts(8AM-4PM, n=4), evening shifts(4PM-l2MN, n=5), and night shifts(12MN-8AM, n=5) in hospital twenty students attending nursing college a used as a control group. Urine specimens were collected in 30 minutes before and after work on the second day of shift work. In day shift nurses, Na$^{+}$ activity was 137mM at 8AM and increased to 206mM at 4PM, whereas $K^{+}$ activity was 42mM at 8AM and no significant change at 4PM. Cl$^{[-10]}$ activity was changed from 234mM to 344mM at 4PM at 8AM. In the evening shift, Na$^{+}$ activity was 117mM at 4PM and 140mM at 12MN, $K^{+}$ activity was 22mM and 32mM, respectively. Cl$^{[-10]}$ activity was 169mM and changed to 270mM. During the night shift, Na$^{+}$ activity was 128mM at 12MN and changed to 161mM at 8AM, $K^{+}$ activity was 42mM at 12MN and 8AM, and Cl$^{[-10]}$ activity was from 303mM and changed to 355mM. In general, the urinary ion activities seemed to increase after work, however there were no significant changes in ion activities except the Na$^{+}$ increase in day shift. The mean of the activities of $K^{+}$ and Cl$^{[-10]}$ before and after work during the day and night shift were significantly higher than those in control group (P<0.05). $K^{+}$ activities were also higher than that of evening shift(P<0.05). However, there was no difference in Na$^{+}$ activity among the control group and three shifts. There was a significant relationship among urinary Na$^{+}$, Cl$^{[-10]}$ and $K^{+}$ in the control group and rotating shift nurses except between Na$^{+}$ and $K^{+}$ in shift. The relationship between Na$^{+}$ and Cl$^{[-10]}$ was low in shift work and there was no significant relationship between Na$^{+}$ and $K^{+}$ in shift, suggesting that the active regulation $K^{+}$ and/or Na$^{+}$ in response to stress upon the shift work disruped the ratio of urinary Na$^{+}$ to $K^{+}$ and also lowered the relationship between $K^{+}$ and Cl$^{[-10]}$ . These results suggest that nurses working the day shift were overloaded and under stress, and the night shift interfered with the physiological rhythm of the nurses.red with the physiological rhythm of the nurses.

  • PDF

Preparation of Na-X and Na-A Zeolites from Coal Fly Ash in a Thermoelectric Power Plant and Comparison of the Adsorption Characteristics for Cu(II) with a Commercial Zeolite (화력발전소 석탄비산재를 이용한 Na-X와 Na-A 제올라이트 제조 및 상업용 제올라이트와의 Cu(II) 흡착 특성 비교)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Kim, Dong-Su;Ahn, Hye-Young;Kim, Dae-Ho;Choi, Chi-Dong;Reddy, Kodoru Janardhan;Yang, Jae-Kyu;Chang, Yoon-Young
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.749-756
    • /
    • 2019
  • Na-X and Na-A zeolites that give high adsorption capacity for heavy metals in an aqueous system were synthesized from the coal fly ash obtained from a thermoelectric power plant using a fusion method. The characteristics and Cu(II) adsorption capacity of the synthetic zeolites were also compared to those of using a commercial zeolite. For the selection of optimum conditions of zeolite synthesis, the effects of major parameters in the fusion method such as a dosage ratio of NaOH, aging time, hydrothermal reaction time, and also the dosage ratio of NaAlO2 (Na-A) on the characteristics and Cu(II) adsorption capacity of the synthetic zeolites were studied. For the analysis of characteristics of the synthetic zeolites, X-ray diffraction (XRD), cation exchange capacity (CEC), Brunaue-Emmett-Teller (BET) and scanning electron microscopy (SEM) were used. The optimum conditions for the synthesis of zeolites with a high adsorption capacity for cationic heavy metals including Cu(II) were the aging time of 6 h, hydrothermal reaction time of 6 h and NaOH and NaAlO2 dosage ratio of 1.5 and 0.5 (Na-A), respectively. According to the Langmuir isotherm test, maximum Cu(II) adsorption capacities of the synthetic and commercial Na-X and Na-A zeolites were found to be 90.1, 105.26, 102.05, and 109.89 mg/g, respectively. This indicates that the adsorption capacity of synthetic zeolites was comparable to commercial ones. The results of this study also suggest that the coal fly ash can be potentially used as a raw material for the zeolite synthesis.

Synthesis of Na-A type Zeolite From Melting Slag (소각재 용융슬래그를 이용한 제올라이트 Na-A의 합성)

  • Jang Young-Nam;Chae Soo-Chuu;Bae In-Kook;Ryou Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • Na-A zeolite were synthesized from melting slag of the incinerated ash by the alkaline activation processes. The experiments were performed in stainless steel vessels, with continuous stirring during the reaction periods. The silica-rich solution, a starting material, which was the waste of crystal growth factory, contains 5.7 wt% SiO₂ and 3.2 wt% Na₂O. And NaAlO₂ was made by the reaction of aluminium dross and NaOH solution and its molar ratios were Na₂O/Al₂O₃= 1.2 and H₂O/Na₂O=9. During the residence time of 7∼8 h at 80℃, the mixing of the silica-rich solution, NaAlO₂ and melting slag yields the production of homogeneous Na-A zeolite. The optimal reactant composition in molar ratio of Na₂O:Al₂O₃:SiO₂ was 1.3∼l.4 : 0.8∼0.9 : 2 and mixing ratio of solution and slag was 1/7∼10 (g/cc). Synthesized Na-A zeolite has cubic form uniformly and its size ranges about 1 ㎛. Ca/sup 2+/ ion exchange capacity of the Na-A was about 180∼210 meq/100g, corresponding approximately 80% to the commercial detergent builder.

A Study on Na/Ca Exchange Ratio in Atrial Muscle of Rabbit (토끼 심방근 세포막의 Na/Ca교환 비율에 관한 연구)

  • Kim, Eui-Yong;Hwang, Sang-Ik;Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.291-299
    • /
    • 1989
  • Na and Ca effects on contracture were studied in order to estimate Na/Ca exchange ratio in the isolated atrial muscle of the rabbit. All experiments were performed in tris-buffered Tyrode solution which was being aerated with 100% $O_2\;and\;kept\;at\;37^{circ}C$. To load intracellular $Na^+,\;10{-6}M$ ouabain or K-free solution were used. Contractures were induced by brier exposure of atrial muscle to Tyrode solution containing various concentrations of Ca or of Na. The results obtained were as follows: 1 ) Increasing the extracellular Ca concentration, the amplitude of contracture also increased and was maximum at 8 mM Ca-Tyrode solution. 2) The relationship between extracellular Ca concentrations and relative amplitude of the contractures showed hyperbolic pattern. By using Hill plot, the line has the slope of 1 12 which means the number of Ca binding sites of the carrier in the cell membrane. 3) The amplitude of the contracture was maximum in 0 mM Na-Tyrode solution and decreased in dose dependent manner when the Na concentration increased. 4) When the relationship between extracellular Na concentrations and the amplitude of contractures was expressed as dose-response curve, the curve showed sigmoid pattern. The line with the slope of 2.82 was obtained by using Hill plot. 5) From above all the results, it is suggested that exchange ratio of Na and Ca via Na/ca exchange system in the atrial muscle of rabbit could be 3:1 approximately.

  • PDF

Outflows in Sodium Excess Objects

  • Park, Jongwon;Jeong, Hyunjin;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2015
  • van Dokkum and Conroy revisited the strong Na I lines at $8200{\AA}$ found in some giant elliptical galaxies and interpreted it as evidence for bottom-heavy initial mass function. Jeong et al. later found a lot of galaxies showing strong Na D doublet absorption line at $5900{\AA}$ (Na D excess objects; a.k.a. NEOs) and showed that their origins can be different for different types of galaxies. While the excess in Na D seems related with interstellar medium in late-type galaxies, smooth-looking early-type NEOs suggest no compelling sign of ISM contributions. To test this finding, we measured doppler shift in the Na D line. We hypothesized that ISM is more likely to show blueshift due to outflow caused by either star formation or AGN activities. In order to measure the doppler shift, we tried both Gaussian and Voigt functions to fit each galaxy spectrum near the Na D line. We found that Voigt profiles reproduce the shapes of the Na D lines markedly better. Many of late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related with star formation-caused gas outflow. On the contrary, early-type NEOs do not show any notable doppler component, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related with ISM activities but purely stellar in origin.

  • PDF