• Title/Summary/Keyword: $N_2O$저감

Search Result 117, Processing Time 0.023 seconds

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH (소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화)

  • Moon, Deok-Hyun;Oh, Da-Yeon;Lee, Seung-Je;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this study was to investigate the effectiveness of a stabilization treatment for As contaminated soil. A combination of hydrated lime, Portland cement, $FeCl_3{\cdot}6H_2O$, and NaOH were used as stabilizing agents. The effectiveness of stabilization treatment was evaluated by the Korean Standard Test (KST) method (1N HCl extraction). Sequential extractions were performed to investigate the As distribution after treatment. Following the application of the treatment, curing periods of up to 7 and 28days were investigated. The experimental results showed that a combination of hydrated lime/Portland cement was more effective than treatments of hydrated lime or Portland cement at immobilizing As in the contaminated soil. The treatment of 25wt% hydrated lime and 5wt% Portland cement was effective in reducing As leachability less than the Korean warning standard of 20 mg/kg. However, the treatments of hydrated lime and Portland cement failed to meet the Korean warning standard even when up to 30 wt% was used. The treatment utilizing hydrated lime and $FeCl_3{\cdot}6H_2O$ was not effective in properly reducing As leachability. The addition of $FeCl_3{\cdot}6H_2O$ was negative in terms of pH condition. Moreover, the treatment with hydrated lime/NaOH was effective in reducing As leachability but not as much as hydrated lime/Portland cement. The sequential extraction results indicated that the residual phase was greatly increased upon the treatment of hydrated lime/Portland cement. It was concluded that the hydrated lime/Portland cement treatment was the best among the other combinations studied at achieving trace As concentrations.

Nitrogen Transformation in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation (옥수수 재배 시 퇴비 및 바이오차 시용 토양에서 질소 이동 동태)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • This study were conducted to evaluate the N mineralization and nitrification rates and to estimate the losses of total carbon and nitrogen by runoff water in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For N mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char as compared to the only application plots of different organic composts except for 47 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For loss of total carbon by run-off water, it was ranged from 1.5 to $3.0kg\;ha^{-1}$ in the different organic compost treatment plots. However, Loss of total carbon with bio-char could be reduced at $0.4kg\;ha^{-1}$ in PC treatment plot. Also, with application of bio-char, total nitrogen was estimated to be reduced at 4.2 (15.1%) and $3.8(11.8%)kg\;ha^{-1}$ in application plots of pig compost and swine aerobic digestate, respectively.

The Multi-layer Fabrication and Characteristic Performance for Dark Current Reduction of Amorphous Selenium (비정질 셀레늄의 누설전류 저감을 위한 다층구조 제작 및 특성 평가)

  • Park, J.K.;Kang, S.S.;Suk, D.W.;Lee, H.W.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.849-852
    • /
    • 2002
  • Recently, amorphous selenium is used as x-ray conversion material for flat-panel x-ray detector. In this paper, we investigated the effect of breakdown under high voltage and leakage current in PN-type multi-layer structure based on p-type a-Se and n-type conductive thin film. Experimental results show that the multi-layer based detector reduced leakage current because n-type CeO2 conductive layer prevent from hole injection into a-Se layer from collection electrode, Also, the breakdown voltage was improved by dielectric layer between a-Se and top electrode.

  • PDF

An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst (바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구)

  • Jeong, Hee-Chan;Sim, Sung-Min;Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.

Effect of Dietary Fermented Earthworm Cast Additives on Odor Reduction of Poultry House and Egg Production (지렁이 분변토 발효 사료 첨가제가 계란 생산 및 악취 저감에 미치는 영향)

  • Hwangbo, Jong;Park, Sang-O;Park, Byung-Sung
    • Korean Journal of Poultry Science
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study was carried out to investigate the effect of feeding fermented earthworm cast additives (FEC) on egg production, egg yolk fatty acids, blood lipid, cecal microorganism and fecal odor. The completely randomized experiment was applied, and the treatments were designed as 2 feeding regimens (control vs. FEC feeding), and FEC contained 3.5% top dressing to common diet. Egg production and egg weight of FEC group were significantly higher than that of control (p<0.05). Ratios of n-6/n-3 fatty acids in the egg yolk of FEC group were significantly higher than those in control group (p<0.05). Concentrations of HDL-C in FEC group was significantly higher than control group (p<0.05), but not triglyceride and total cholesterol. The caecal Lactobacillus of FEC group was significantly higher in FEC group than control group (p<0.05). $NH_3$ concentrations from poultry house were significantly lower in FEC group than control (p<0.05). In conclusion, these study results showed that the addition of FEC at 3.5% to the diet has reduced odor of poultry house and improved the n-6/n-3 fatty acid of egg yolk and egg production in laying hens.

Fermentation Efficiency and Effect on Morphological Change of Nitrogen and Phosphorous with the Litter Types of Cowshed (우사의 깔짚 종류에 따른 발효 효율과 질소와 인의 형태 변화에 미치는 영향)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • The manure made of chaff and sawdust as litter was collected separately at a cowshed of a livestock farm in Andondg city. The fermentation efficiency of excreta is greatly influenced by the type and characteristics of litter and a factor to be considered for reducing N and P, the causes of eutrophication. Changes in weight with temperature and constituents of sample were examined using TG-DTA and XRF, respectively. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N eluted from manure by rain were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As a result, the fermentation efficiency of excreta in sawdust manure is three times higher as compared with chaff manure. The higher the fermentation efficiency, ammonia nitrogen was highly de-nitrogenated and organic phosphorous were also changed into phosphorous ions. Furthermore, phosphorous ions can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O) with addition of Ca and Mg.

Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and $N_2O$ Emission (2008년도 대한민국 질소수지 연구: 비점오염증가 및 $N_2O$발생량산정)

  • Nam, Yock-Hyoun;An, Sang-Woo;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • The main objective of this research was to estimate Nitrogen budget of South Korea in 2008. Input-output budgets for nitrogen fluxes were categorized into three sections: cities, agricultural area, and forest. Chemical and biological fixation, dry and wet deposition, imported food and feed were used as the nitrogen input. Crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were used as the nitrogen outputs. Annual total nitrogen input was 1,294,155 ton/yr, and output was 632,228 ton/yr. Comparison with a previous research in 2005 indicates that nitrogen input was decreased by 1.9% due to the decrease in nitrogen fertilizer while nitrogen output was decreased by 6.3%. Non-point source (NPS) pollution was also estimated by mass balance approach, which increased by 22% than the previous research in 2005. The emission of nitrous oxide ($N_2O$) caused by denitrification was newly examined in this research. About 8,289 ton/yr of $N_2O$ was released from agriculture area and domestic wastewater treatment plant.

Study on the Morphological Change and Reduction Plan of Nitrogen and Phosphorous in Litter and Manure of Cow House (우사의 깔짚과 퇴비에 있는 질소와 인의 형태적 변화와 저감 방안에 관한 연구)

  • Kim, Younjung;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.4
    • /
    • pp.249-253
    • /
    • 2021
  • Litter and manure were obtained at a cow house of a livestock farm in Andondg city. We examined the change of formation of nitrogen and phosphorous from these samples and tried to suggest a more useful and realistic way for removing them. Constituent and its content of sample were identified by XRF. NO2-, NO3-, and PO43- ions and NH4+, T-P and T-N released from sample were analyzed using ion chromatograph and UV/Vis spectrometry, respectively. As the results of this study, the ammonia nitrogen in the early stage of cow excretion is a need to make an ammonia gas state that can be immediately volatile by increasing the pH. Nitrogen and phosphorous, the main source of nutrition in green algal bloom can be removed by transforming insoluble salts such as calcium phosphate (CaHPO4·3H2O) and struvite (NH4MgPO4·6H2O), respectively, with addition of Ca and Mg after stimulating fermentation of manure.

Degradation and Ecotoxicity Reduction of Reactive Dye by Using Advanced Oxidation Process (고도산화공정을 이용한 반응성 염료의 제거 및 생태독성 저감)

  • Seo, Kyung Ae;Park, Jae Hong;Jung, Soo Jung;Lim, Byung Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • In this study, the deriving optimum conditions for decolorization of Acid Orange II solution was carried using $TiO_2$ advanced oxidation process. After that, on base of the deriving results, the range of dye concentration was estimated. In addition, acute toxicity test was also carried to assess toxicity unit according to decolorization and TOC removal. In case of the blockage of light, 20 mg/L of dye solution, and 0.5 g $TiO_2$, the effect of decolorization at pH 3 was larger than at pH 6 and 10, so it was shown that decolorization is dependent on pH. The use of 5 g $TiO_2$ showed best performance of decolorization, but that of 3 g $TiO_2$ was chosen to optimum condition in considering of economical aspects. Four light sources, sun, fluorescent lamp, BLB lamp, and UV-B lamp, were used and decolorization was 99.4% and 100% at 50 mg/L, 98.6% and 99.7% at 100 mg/L for sun and UV-B lamp, respectively. In spite of the optimum condition of decolorization at pH 3, the evaluation of acute toxicity test showed highly toxic. In conclusion, although the optimum treatment of dye solution is performed, water ecology can be polluted in discharging it into water system. Therefore, it is needed to study of water ecological system with dye water treatment, and it takes all the circumstances into consideration.