• Title/Summary/Keyword: $NO_x$ conversion efficiency

Search Result 47, Processing Time 0.061 seconds

Reduction of NOx by CO on the Lanthanoid Perovskite-type Catalysts for Hot Gas Cleanup (고온 배가스 처리용 Lanthanoid계 Perovskite 형 촉매상에서 CO에 의한 NOx의 환원)

  • Lee, Jea-Keun;Lee, Jae-Hee;Lim, Jun-Heok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.169-178
    • /
    • 2000
  • Perovskite oxide catalysts doped on porous alumina beads are prepared in a citric acid solution. To investigate the applicability of the catalysts to the hot gas cleanup, a series of experiments on the reduction characteristics of $NO_x$ by CO as a reducing agent are carried out in a packed bed reactor containing the catalysts. Parameters tested are the operating temperature and $CO/NO_x$ molar ratio. It is found that mixed complex oxides of $La_{0.5}Sr_{0.5}CoO_3$, $SrAl_{12}O_{19}$ and $LaAl_{11}O_{18}$ are uniformly distributed on the alumina beads. The conversion efficiency of $NO_x$ by CO sharply increases with the operating temperature up to $700^{\circ}C$ and then approaches 100% when $CO/NO_x$ molar ratio is greater than 1.0. The conversion efficiency of $NO_x$ is maintained by over 98% during a continuous operation for 23 hours at $800^{\circ}C$ and space velocity of $10700hr^{-1}$.

  • PDF

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature (Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

Comparison of the LNT Regeneration Methods in 2.2L Common Rail Direct Injection Diesel Engine (2.2L 직분사 디젤 엔진에서 LNT 촉매 재생을 위한 환원제 분사 방법 비교)

  • Nam, Chungwoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • In this study we investigated the regeneration methods for the lean $NO_x$ trap (LNT) catalyst in a 2.2L direct injection diesel engine. The regeneration methods were 1) in-cylinder post fuel injection and 2) external fuel injection strategy. The in-cylinder post fuel injection method uses in-cylinder injectors with the addition of the post fuel injection to supply enough reductants such as CO, $H_2$, THC. The external fuel injection method was enabled by installing a fuel injector with a wide spray angle before the LNT catalyst. Through the engine experiment, the $NO_x$ conversion efficiency, the amount of reductant exhaust gases, fuel consumption, and temperature behavior in the LNT catalyst were evaluated and compared for the two regeneration methods.

A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst (선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구)

  • Park, Young-Joon;Hong, Woo-Kyoung;Ka, Jae-Geum;Cho, Yong-Seok;Joo, Jae-Geon;Kim, Hyun-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Simultaneous removal of $SO_X$ and $NO_X$ by wet scrubber at small and medium craft (중소형 선박의 $SO_X/NO_X$ 동시제거를 위한 습식세정시스템)

  • Cha, Yu-Joung;Lee, Ju-Yeol;Ha, Tae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.159-166
    • /
    • 2014
  • In recent years, researchers have put a considerable effort to decrease the emission of harmful gaseous pollutants to the atmosphere. In order to remove simultaneously $SO_2$ and $NO_X$ from the flue gas of small and medium-sized ship, we designed minimal wet scrubber inside a compact multistage modular system. In this study we proceed experiment of elemental technology at each stage of the scrubber. The each stage is oxidation of NO which is the main component of $NO_X$, and removal of $SO_2$, respectively. $NaClO_2$ was used to oxidize NO gas, and NaOH was used to remove $SO_2$ gas. The maximum NO conversion efficiency and the $SO_2$ removal efficiency are both indicate 100%.

Synthesis of WO3/TiO2 catalysts from different tungsten precursors and their catalytic performances in the SCR (텅스텐(W) 원료에 따른 WO3/TiO2 SCR 촉매의 제조 및 촉매능)

  • Lee, Byeong Woo;Lee, Jin Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.213-218
    • /
    • 2014
  • An investigation of the influence of $WO_3$ addition with different precursors and preparation methods on the phase formation and selective catalytic reduction (SCR) efficiency of anatase-$TiO_2$ powders has been carried out. An anatase-$TiO_2$ synthesized by precipitation process was used as a catalyst support. For $WO_3(10wt%)/TiO_2$, the W loading to the $TiO_2$ support led to the lower in anatase to rutile transition temperature to ${\sim}900^{\circ}C$ from $1200^{\circ}C$ of the $TiO_2$ support alone. In the case of $WO_3(10wt%)/TiO_2$ SCR powders obtained from a wet process with ammonium meta-tungstate (AMT) precursor, the highest $NO_X$ conversion efficiency was achieved at $450^{\circ}C$ remaining high efficiency at $500^{\circ}C$, while the same composition prepared from a dry process with $WO_3$ addition showed the lowered efficiency with temperature after reaching the efficiency maximum at $350^{\circ}C$. The same tendency has been found that the $V_2O_5(5wt%)-WO_3(10wt%)/TiO_2$ SCR powders obtained from the wet process with AMT precursor has shown the superior $NO_X$ conversion efficiency over 90 % in a wider temperature range of $300{\sim}500^{\circ}C$.

Preparation of $WO_3/TiO_2$ and $V_2O_5/TiO_2$ powders and their catalytic performances in the SCR of $NO_x$ ($WO_3/TiO_2$$V_2O_5/TiO_2$ 분말의 합성 및 $NO_x$ 제거 SCR특성)

  • Lee, Tae-Suk;Lee, In-Gyu;Lee, Byeong-Woo;Shin, Dong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.216-221
    • /
    • 2006
  • An investigation of the influence of $WO_3$ and $V_2O_5$ catalysts on the microstructure, phase formation and selective catalytic reduction (SCR) efficiency of the synthesized SCR powders has been carried out. A commercial anatase-$TiO_2$ was used as the catalysts support. For $WO_3(10wt%)/TiO_2$, the W loading to the $TiO_2$ support led to the lower in anatase to rutile transition temperature from $1200^{\circ}C$ of $TiO_2$ support to ${\sim}900^{\circ}C$. The transition temperature was also lowered to below $650^{\circ}C$ in the $V_2O_5$(5 and 10 wt%) added composition. The $WO_3(10wt%)/TiO_2$ SCR powder obtained at $450^{\circ}C$ showed near 100% of $NO_x$ conversion efficiency at $350{\sim}400^{\circ}C$ and for the powder prepared at $650^{\circ}C$ the same efficiency was achieved in wider temperature range $300{\sim}400^{\circ}C$. The highest $NO_x$ conversion efficiency of 100% was obtained in the $V_2O_5(5wt%)/TiO_2$ SCR composition calcined at $650^{\circ}C$ in the relatively wider temperature range $250{\sim}350^{\circ}C$, while the catalytic efficiency considerably decreased for the $V_2O_5(10wt%)/TiO_2$. The lowered conversion efficiency of $NO_x$ observed in the $V_2O_5(10wt%)/TiO_2$ composition calcined at $650^{\circ}C$ was considered to be correlated with the lowered surface area resulting from the increased crystallite growth by highly reactive vanadium loading.

NOx Removal of NH3-SCR Catalysts with Operating Conditions (공정조건에 따른 NH3-SCR용 촉매의 질소산화물 제거특성)

  • Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5610-5614
    • /
    • 2012
  • Performance of catalyst was studied with various operating conditions for selective catalytic reduction of $NO_x$ with $NH_3$. It is confirmed that catalysts containing Mn and Cu have a good efficiency in the usage of oxygen by the $H_2$-TPR analysis. In the case of catalyst #1, $NO_x$ conversion was decrease with the increase of reaction temperature. But in the case of catalyst #2, $NO_x$ conversion was increased and then remained constant with the increase of reaction temperature. This phenomenon is due to the difference of the $NH_3$ oxidation of both catalysts.

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.