• Title/Summary/Keyword: $NO_x$ 저감성능

Search Result 34, Processing Time 0.022 seconds

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.

A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regenerating Method PM Reduction (대형디젤기관에서 연속재생방식 PM저감장치장착에 따른 유동 및 성능에 관한 수치해석적 연구)

  • Han, Young-Chool;Moon, Byung-Chul;Oh, Sang-Ki;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.52-57
    • /
    • 2005
  • The increasing automobiles continue to cause air-pollution problem s worse than ever. In fact, many automobile research are involved in how to reduce exhaust emissions effectively specially in $NO_X$ and PM to comply with stringent emission standards, Euro V. This research emphasized on the development of continuous regeneration DPF technology which was one of promising removing technology of particulate matters because of its comparability and high applicability. In addition, this research discussed on some design points of view through correlation study by com paring the experimental data with computational results by the introduction of commercial codes such as CFD-ACE+ and KIVA-3V. The numerical simulation on the performance of continuous regeneration DPF apparatus and corresponding emission characteristics has been predicted well enough and verified with experimental results. The pressure and average temperatures are decreased to about 2.6% and 1.4% respectively under a full engine load condition mainly due to back pressures raised by diesel particulate filter. Pressure, temperature and heat releasing rates tend to decrease specially at higher engine load, but they are not affected at lower engine load regions.

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.

Development of Correlation FXLMS Algorithm for the Performance Improvement in the Active Noise Control of Automotive Intake System under Rapid Acceleration (급가속시 자동차 흡기계의 능동소음제어 성능향상을 위한 Correlation FXLMS 알고리듬 개발)

  • Lee, Kyeong-Tae;Shim, Hyoun-Jin;Aminudin, Bin Abu;Lee, Jung-Yoon;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.551-554
    • /
    • 2005
  • The method of the reduction of the automotive induction noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space of the engine room. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the LMS (Least-Mean-Square) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system. However, the convergence performance of LMS algorithm goes bad when the FXLMS algorithm is applied to an active control of the induction noise under rapidly accelerated driving conditions. Thus Normalized FXLMS algorithm was developed to improve the control performance under the rapid acceleration. The advantage of Normalized FXLMS algorithm is that the step size is no longer constant. Instead, it varies with time. But there is one additional practical difficulty that can arise when a nonstationary input is used. If the input is zero for consecutive samples, then the step size becomes unbounded. So, in order to solve this problem. the Correlation FXLMS algorithm was developed. The Correlation FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Correlation FXLMS Is presented in comparison with that of the other FXLMS algorithms based on computer simulations.

  • PDF