• Title/Summary/Keyword: $NH_3$gas

Search Result 804, Processing Time 0.021 seconds

Residual characteristic of tebuconazole and fludioxonil in Allium victorialis (Allium ochotense Prokh.) (소면적 재배작물 산마늘(Allium ochotense Prokh.) 중 살균제 Tebuconazole 및 Fludioxonil의 잔류특성)

  • Woo, Min-Ji;Hur, Kyung-Jin;Kim, Ji-Yoon;Saravanan, Manoharan;Kim, Se-Weon;Hur, Jang-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.354-360
    • /
    • 2015
  • In recent years, Allium victorialis has been extensively used as a pharmacological agent for various diseases in the form of anti-arteriosclerotic, anti-diabetic and anti-cancer. Allium victorialis is severely affected by various fungal diseases since it naturally grow in the shady and humid environments in Korea. In this case, different types of fungicides are applied to control the fungal diseases in Allium victorialis. The present study was aimed to determine the residual characteristics of two fungicides namely tebuconazole and fludioxonil on Allium victorialis. For this study, the fungicides were drenched soil on Allium victorialis in the cultivation area Pyeongchang by the standard (two thousand fold) and double (thousand fold) dilutions. At the end of $15^{th}$, $30^{th}$ and $40^{th}$ days samples were collected for residue analysis. Residues of tebuconazole and fludioxonil were analyzed using GC/NPD (Gas Chromatography/Nitrogen Phosphorus Detector) and their recovery were found to be 108.8~119.5% and 91.3~104.8%, respectively. The method of limits of quantification for both fungicides was $0.01mg\;kg^{-1}$. Further, the results of this study shows that the residue levels of both fungicides on Allium victorialis were <$0.01{\sim}0.12mg\;kg^{-1}$ and $0.01{\sim}0.09mg\;kg^{-1}$ and their % ADI (% Acceptable Daily Intake) were 17.44% and 25.75%, respectively. Based on the results obtained in this study, we suggest that the residue levels of both of the fungicides on Allium victorialis are safe and these fungicides can also be used to control fungal diseases in Allium victorialis.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Effects of Saponin Contained Plant Extracts on Ruminal Fermentation Characteristics and Methane Production (Saponin 함유 식물 추출물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Ok, Ji-Un;Baek, Youl-Chang;Kim, Kyoung-Hoon;Lee, Sang-Cheol;Seol, Yong-Joo;Lee, Kang-Yeon;Choi, Chang-Weon;Jeon, Che-Ok;Lee, Sang-Suk;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • This study was conducted to evaluate the effects of saponin contained plant extracts on in vitro rumen fermentation characteristics and methane production. Ruminal fluid was collected from rumen cannulated Hanwoo steers fed rice straw and concentrate (5:5). Collected rumen fluids, corn starch and buffer including saponin contained plant extracts (ginseng, Ogapi, soapwort, tea plant and yucca; 0.5%/15 ml) were incubated at $39^{\circ}C$ for 24 h. All incubations were repeated five times. Rumen pH in all treatments was lower (p<0.05) compared with that of the control (no addition) during incubation time. The concentration of total VFA in all treatments was higher (p<0.05) than that of the control after 12h incubation. Compared with the control, the concentration of acetate and propionate in all treatments was lower and higher after 6h incubation, respectively. The concentration of $NH_3$-N in all treatments was lower (p<0.05) than that of the control except for Ogapi or yucca extracts supplementation. The number of protozoa in all treatments was significantly (p<0.05) lower than that of the control except for soapwort extract supplementation. The total gas production and methane production in all treatments was higher (p<0.05) and lower (p<0.05) compared with the control, except for ogapi or soapwort extracts supplementation after 12h incubation, respectively. Therefore, reduction in methane production by saponins may could be results from decreased protozoal population without any negative in vitro fermentation.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.