• 제목/요약/키워드: $NF-{\kappa}B$ activation

Search Result 834, Processing Time 0.03 seconds

Induction of Inos Gene Expression by Polysaccharide Isolated from Poria Cocos Sclerotium

  • Jeon, Young-Jin
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.164-164
    • /
    • 2003
  • We show that PCSC, a polysaccharide isolated from the sclerotium of Poria cocos with one percent sodium carbonate, significantly induces nitric oxide (NO) production and inducible NO synthase (iNOS) transcription through the activation of nuclear factor-$\kappa$B/Rel (NF-$\kappa$B/Rel).(omitted)

  • PDF

Adenophorae Radix Attenuates Mast Cell-mediated Allergic Inflammation through Down-regulation of NF-κB/ Caspase-1 Activation

  • Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.659-665
    • /
    • 2020
  • Adenophorae Radix (AR) has been used as a traditional medicine for various diseases. However, the regulatory mechanisms of AR in allergic inflammation are not yet understood. The present study was conducted to investigate the effect and mechanisms of AR on the mast cell-mediated allergic response. To determine the pharmacological mechanisms of AR in allergic inflammation, we evaluated the effects of AR on the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-8 as well as the activation of nuclear factor-κB (NF-κB) and caspase-1 in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated human mast cells (HMC-1). Our results demonstrated that AR effectively attenuated the PMACI-induced production of TNF-α, IL-6, IL-1β and IL-8 in stimulated HMC-1. Additionally, we showed that the inhibitory effect of AR on inflammatory cytokines in PMACI-stimulated HMC-1 cells involved the suppression of the activation NF-kB/caspase-1 in PMACI-stimulated HMC-1. Collectively, these findings provide experimental evidence that AR may be a useful candidate for the treatment of allergic inflammation.

Ameliorative Effect of Pu-erh Tea on DSS-induced Colitis through Regulation of NF-κB Activation in Mice

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.248-254
    • /
    • 2021
  • Ulcerative colitis (UC), chronic inflammatory bowel disease, is characterized by severe inflammation in the colon. Tea is one of the most popular beverages consumed worldwide. Pu-erh tea, a unique Chinese tea produced by microbial activities, possesses a broad range of health-promoting effects, including anti-aging, anti-Alzheimer's disease, antioxidation and anti-obesity. However, the inhibitory effect of Pu-erh tea on intestinal inflammation and the underlying mechanism remain unclear. The present study was designed to evaluate the regulatory effect of Pu-erh tea extract (PTE) on dextran sulfate sodium (DSS)-induced colitis clinical signs by analyzing the weight loss and colon length in mice. The inhibitory effects of PTE on inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) were also determined in DSS-treated colitis tissue. We observed that PTE treatment significantly inhibited the DSS-induced clinical symptoms of weight loss, decrease,in colon length, and colon tissue damage in mice. Moreover, PTE attenuated the DSS-induced levels of IL-6 and TNF-α in colon tissue. We also demonstrated the anti-inflammatory mechanism of PTE by suppressing the activation of NF-κB in DSS-treated colon tissues. Collectively, the findings provide experimental evidence that PTE may be effective in preventing and treatment of intestinal inflammatory disorders, including UC.

Effect of Orostachys japonicus on Apoptosis and Autophagy in Human monocytic leukemia Cell line THP-1 via Inhibition of NF-κB and Phosphorylation of p38 MAPK (와송이 인간 백혈병 세포주 THP-1에서 NF-κB 활성 억제와 p38 활성을 통해 세포사멸과 자가포식에 미치는 영향)

  • Joo, Seonghee;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.35-50
    • /
    • 2019
  • Objectives: Orostachys japonicas (O. japonicus) has been known for its anti-tumor effect. In the present study, it was investigated whether O. japonicus EtOH extracts could induce apoptosis and autophagy which are part of the main mechanism related to anti-tumor effect in THP-1 cells. Methods: Cells were treated with various concentrations of O. japonicus EtOH extracts ($0-300{\mu}g/ml$) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay and apoptosis rate was examined by flow cytometry and ELISA assay. The mRNA expression of apoptosis-related genes (Bcl-2, Mcl-1, Survivin, Bax) and autophagy-related gene (mTOR) was evaluated using real-time PCR. The protein expression of Caspase-3, Akt, LC3 II, Beclin-1, Atg5, $NF-{\kappa}B$, p38, ERK was evaluated using western blot analysis. Results: O. japonicus EtOH extracts inhibited cell proliferation and apoptosis rate was increased in both flow cytometry and ELISA assay. Bcl-2, Mcl-1, Survivin (anti-apoptosis factors) mRNA expressions were decreased and Bax (pro-apoptosis factor) mRNA level was increased. mTOR mRNA expressions was decreased and LC3 II protein expressions was increased. Activation of $NF-{\kappa}B$ was decreased and phosphorylation of p38 was increased. Conclusion: O. japonicus is regarded to inhibit cell proliferation, to induce apoptosis and to regulate autophagy-related genes in THP-1 cells via $NF-{\kappa}B$ and p38 MAPK signaling pathway. This suggests O. japonicus could be an effective herb in treating acute myeloid leukemia.

The Effect of Patriniae Radix on the Oxidative Stress and the NF-${\kappa}B$ Signaling in Mouse LLC-$PK_1$ Cell (Mouse의 신장상피세포에서 패장(敗醬)추출물이 산화 스트레스 및 NF-${\kappa}B$ signaling에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Choi, Gyu-Ho;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.153-165
    • /
    • 2010
  • Objectives : The aims of this study were to investigate the cytoprotective, antioxidative and inflammation genes inhibitory effects of Patriniae Radix on the mouse LLC-$PK_1$ cells (renal epithelial cells). Methods : The cytoprotective effect of Patriniae Radix was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of superoxide anion radical (${\cdot}{O_2}^-$) by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), nitric oxide (NO) by 4,5-diaminofluorescein (DAF-2), peroxynitrite ($ONOO^-$) by dihyldrorhodamine 123 (DHR 123) and prostaglandin $E_2$ ($PGE_2$) by $PGE_2$ immunoassay on $H_2O_2$-treated LLC-$PK_1$ cells. For measuring of inflammation genes inhibitory effects, western blot was performed to detect IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$ and VCAM-1 protein level in cytosol fractions from LLC-$PK_1$ cells. Results : Patriniae Radix extract reduced the $H_2O_2$-induced cell death and inhibited the amount of $H_2O_2$-induced ${\cdot}{O_2}^-$, NO, $ONOO^-$, $PGE_2$ generation dose-dependently on the mouse LLC-$PK_1$ cells in vitro. Also Patriniae Radix extract inhibited the expression of IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, COX-2, iNOS, IL-$1\beta$ and VCAM-1 genes dose-dependently by means of decreasing activation of NF-${\kappa}B$. Conclusions : According to above results, it was identified that Patriniae Radix had the cytoprotective, antioxidative and inflammation genes inhibitory effects. So it was suggested that Patriniae Radix would be effective to the treatment for the inflammatory process and inflammation-related diseases.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

ROS-, RNS-Scavenging and Anti-inflammatory Activities of Mori Fructus (상심자 추출물의 ROS, RNS 및 염증 촉진 인자 제어 효과)

  • Park, Soon-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.106-116
    • /
    • 2008
  • Objectives : Peroxynitrite $(ONOO^-)$, superoxide anion radical $({\cdot}O_2^-)$ and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate the $ONOO^-$, NO, and $({\cdot}O_2^-)$ scavenging and anti-inflammatory activities of Mori Fructus in ob/ob mice. Methods : Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups received the standard chow. The experimental groups were fed a diet of chow supplemented with 7.5, 15 and 30 mg Mori Fructus per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blotting was performed using anti-phospho $I{\kappa}B-\alpha$, anti-IKK-$\alpha$, anti-NF-${\kappa}B$ (p50, p65), anti-COX-2 and anti-iNOS respectively. Results : Mori Fructus inhibited the generation of $ONOO^-$, NO and $({\cdot}O_2^-)$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondria in vitro. The generation of $ONOO^-$, NO and $({\cdot}O2^-)$ were inhibited in the Mori Fructus-administered ob/ob mice groups. The GSH/GSSG ratio decreased in the ob/ob mice, whereas they improved in the Mori Fructus-administered groups. Mori Fructus inhibited the expression of phospho $I{\kappa}B-\alpha$, IKK-$\alpha$, COX-2, iNOS genes, and thereby the activation of NF-$I{\kappa}B$. Conclusions : These results suggest that Mori Fructus is an effective $ONOO^-$, $({\cdot}O_2^-)$ and NO scavenger, and therefore it might be a potential therapeutic drug against the inflammation process and inflammation-related diseases.

  • PDF

Inhibitory effect of Mori Folium ethanol extract on pro-inflammatory mediator in lipopolysaccharide - activated RAW 264.7 cells (상엽(桑葉) 추출물의 LPS로 유도된 RAW 264.7 세포에서의 항염증 효과)

  • Park, Sang-Mi;Byun, Sung-Hui;Kim, Young-Woo;Cho, Il-Je;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.27 no.3
    • /
    • pp.31-38
    • /
    • 2012
  • Objectives : Mori Folium is one of the traditional medicinal herb. It was commonly used for sericulture in the world and has been traditionally administered as natural therapeutic agent for the treatment of filariasis, diabetes and dropsy in East Asia. This study investigated an anti-inflammatory potential of Mori Folium ethanol extract (MFE). Methods : We examined the effects of MFE on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) in a murine macrophage cell line, RAW 264.7. Results : MFE inhibited production of NO and $PGE_2$ in a dose dependent manner and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$. As a plausible molecular mechanism, increased degradation of I-${\kappa}B{\alpha}$ and phosphorylation of I-${\kappa}B{\alpha}$, NF-${\kappa}B$ and MAP kinases by LPS were partly blocked by MFE treatment. Conclusions : These results suggest that MFE has an anti-inflammatory therapeutic potential, which may result from inhibition of NF-${\kappa}B$ activation and MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

Inhibitory Effect of WK-38 on TNF-$\alpha$ Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 TNF-$\alpha$ 자극에 의해 유도되는 혈관염증에 대한 WK-38의 억제 효과)

  • Hwang, Sun-Mi;Lee, Yun-Jung;Kim, Eun-Ju;Yoon, Jung-Joo;Lee, Hyeok;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1132-1138
    • /
    • 2009
  • Vascular inflammation is an important event in the development of vascular diseases such as tumor progression and atherosclerosis. This study was to investigate the inhibitory effects of WK-38, a new herbal prescription for the treatment of atherosclerosis, on vascular inflammation in human umbilical vein endothelial cells (HUVEC). WK-38 is composed of Rhei Rhizoma, Magonoliae Cortex, Moutan Cortez Radicis. Pretreatment with WK-38 was significantly blocked TNF-$\alpha$-induced expression level of cell adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial cell selectin (E-selectin) in a dose-dependent manner. TNF-$\alpha$-induced cell adhesion in co-cultured U937 and HUVEC was also blocked by pretreatment with WK-38. Moreover, WK-38 significantly suppressed p65 NF-${\kappa}B$ translocation into the nucleus by TNF-$\alpha$ as well as the phosphorylation and degradation of $I{\kappa}B-{\alpha}$. In conclusion, the present data suggested that WK-38 could suppress TNF-$\alpha$-induced vascular inflammatory process, though inhibition of NF-${\kappa}B$ activation in HUVEC.

LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-${\kappa}B$ Pathways

  • Lee, Seung Jin;Seo, Kyo Won;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • 5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS ($0{\sim}3{\mu}g/ml$) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-${\kappa}B$ were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-${\kappa}B$ were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-${\kappa}B$ pathways in monocytes.