• Title/Summary/Keyword: $Mo_6S_8$

Search Result 383, Processing Time 0.025 seconds

Comparison in Seed and Sprout Quality under Different Cropping Patterns in Mungbean (재배방식에 따른 녹두 종실과 나물의 품질변화)

  • Kim, Dong-Kwan;Son, Dong-Mo;Choi, Jin-Gyung;Shin, Hae-Ryong;Chon, Sang-Uk;Lee, Kyung-Dong;Jung, Ki-Yeol;Rim, Yo-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.212-218
    • /
    • 2011
  • This study was performed to determine the relative quality of mungbeans harvested in bulk after applying a labor-saving cultivation (LSC) method, compared to mungbeans harvested three different times under the conventional cultivation condition. There was no significant difference in starch, crude protein, and vitexin or isovitexin content of seed according to the cropping system or harvest time. The mungbeans grown under the LSC method had the highest crude fat content, followed by mungbeans from the third-, the second- and the first-harvest mungbeans under the conventional cultivation. No significant difference was found in the composite ratio of saturated fatty acids to unsaturated fatty acids according to cropping system or harvest time. The second-harvest mungbeans grown under the conventional cultivation condition had 17 different types of fatty acids, while the third-harvest mungbeans grown under the conventional cultivation and those grown under the LSC condition had the fewest types of fatty acids with 12. Of the major saturated fatty acids, palmitic acid and arachidonic acid had the highest composite ratio in the first conventional cultivation followed by the second, the third and the LSC. However, stearic acid showed the opposite tendency. Of the major unsaturated fatty acids, linoleic acid had the highest composite ratio in the first conventional cultivation, followed by the second and third conventional cultivation and the LSC. Amylogram characteristics of the mungbeans were significantly different according to cropping system and harvest times. The mungbeans harvested after the first conventional cultivation had significantly higher pasting temperature, peak viscosity, holding strength viscosity, final viscosity and breakdown, while mungbeans harvested after the third conventional cultivation had significantly higher setback viscosity. In contrast, the mungbeans harvested under the LSC methods had a significantly lower amylogram value. When harvest rate, color values and amino acid content of sprout were measured, mungbeans grown under the LSC conditions had a low harvest rate of sprout, but had Hunter's color values and amino acid content of sprout similar to those of mungbeans grown under the conventional cultivation condition.

A Study about the Correlation between Information on Stock Message Boards and Stock Market Activity (온라인 주식게시판 정보와 주식시장 활동에 관한 상관관계 연구)

  • Kim, Hyun Mo;Yoon, Ho Young;Soh, Ry;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.559-575
    • /
    • 2014
  • Individual investors are increasingly flocking to message boards to seek, clarify, and exchange information. Businesses like Seekingalpha.com and business magazines like Fortune are evaluating, synthesizing, and reporting the comments made on message boards or blogs. In March of 2012, Yahoo! Finance Message Boards recorded 45 million unique visitors per month followed by AOL Money and Finance (19.8 million), and Google Finance (1.6 million) [McIntyre, 2012]. Previous studies in the finance literature suggest that online communities often provide more accurate information than analyst forecasts [Bagnoli et al., 1999; Clarkson et al., 2006]. Some studies empirically show that the volume of posts in online communities have a positive relationship with market activities (e.g., trading volumes) [Antweiler and Frank, 2004; Bagnoli et al., 1999; Das and Chen, 2007; Tumarkin and Whitelaw, 2001]. The findings indicate that information in online communities does impact investors' investment decisions and trading behaviors. However, research explicating the correlation between information on online communities and stock market activities (e.g., trading volume) is still evolving. Thus, it is important to ask whether a volume of posts on online communities influences trading volumes and whether trading volumes also influence these communities. Online stock message boards offer two different types of information, which can be explained using an economic and a psychological perspective. From a purely economic perspective, one would expect that stock message boards would have a beneficial effect, since they provide timely information at a much lower cost [Bagnoli et al., 1999; Clarkson et al., 2006; Birchler and Butler, 2007]. This indicates that information in stock message boards may provide valuable information investors can use to predict stock market activities and thus may use to make better investment decisions. On the other hand, psychological studies have shown that stock message boards may not necessarily make investors more informed. The related literature argues that confirmation bias causes investors to seek other investors with the same opinions on these stock message boards [Chen and Gu, 2009; Park et al., 2013]. For example, investors may want to share their painful investment experiences with others on stock message boards and are relieved to find they are not alone. In this case, the information on these stock message boards mainly reflects past experience or past information and not valuable and predictable information for market activities. This study thus investigates the two roles of stock message boards-providing valuable information to make future investment decisions or sharing past experiences that reflect mainly investors' painful or boastful stories. If stock message boards do provide valuable information for stock investment decisions, then investors will use this information and thereby influence stock market activities (e.g., trading volume). On the contrary, if investors made investment decisions and visit stock message boards later, they will mainly share their past experiences with others. In this case, past activities in the stock market will influence the stock message boards. These arguments indicate that there is a correlation between information posted on stock message boards and stock market activities. The previous literature has examined the impact of stock sentiments or the number of posts on stock market activities (e.g., trading volume, volatility, stock prices). However, the studies related to stock sentiments found it difficult to obtain significant results. It is not easy to identify useful information among the millions of posts, many of which can be just noise. As a result, the overall sentiments of stock message boards often carry little information for future stock movements [Das and Chen, 2001; Antweiler and Frank, 2004]. This study notes that as a dependent variable, trading volume is more reliable for capturing the effect of stock message board activities. The finance literature argues that trading volume is an indicator of stock price movements [Das et al., 2005; Das and Chen, 2007]. In this regard, this study investigates the correlation between a number of posts (information on stock message boards) and trading volume (stock market activity). We collected about 100,000 messages of 40 companies at KOSPI (Korea Composite Stock Price Index) from Paxnet, the most popular Korean online stock message board. The messages we collected were divided into in-trading and after-trading hours to examine the correlation between the numbers of posts and trading volumes in detail. Also we collected the volume of the stock of the 40 companies. The vector regression analysis and the granger causality test, 3SLS analysis were performed on our panel data sets. We found that the number of posts on online stock message boards is positively related to prior stock trade volume. Also, we found that the impact of the number of posts on stock trading volumes is not statistically significant. Also, we empirically showed the correlation between stock trading volumes and the number of posts on stock message boards. The results of this study contribute to the IS and finance literature in that we identified online stock message board's two roles. Also, this study suggests that stock trading managers should carefully monitor information on stock message boards to understand stock market activities in advance.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.