• Title/Summary/Keyword: $Mo(CO)_6$

Search Result 444, Processing Time 0.027 seconds

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Molybdenum and Cobalt Silicide Field Emitter Arrays

  • Lee, Jong-Duk;Shim, Byung-Chang;Park, Byung-Gook;Kwon, Sang-Jik
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level were almost the same in the range of $10^{-9}{\sim}10^{-6}$ torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

  • PDF

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Isolation and Structure of cis,fac -Dibromooxotris(2,6-dimethylphenyl isocyanide)molybdenum(IV), cis,fac-$[Mo(O)Br_2(CN-C_6H_3-2,6-Me_2)_3]$ (cis,fac-Dibromooxotris(2,6- dimethylphenyl isocyanide)molybdenum (IV), cis,fac-$[Mo(O)Br_2(CN-C_6H_3-2,6-Me_2)_3]$의 분리 및 구조)

  • 이범준;한원석;이순원
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.82-85
    • /
    • 2002
  • From the reaction of cis,cis,trans- [MoBr/sub 2/(CO)/sub 2/(PPh/sub 3/)/sub 2/]with 2,6-dimethylphenyl isocyanide, a molybdenum oxohaloisocyanide compound cis,fac-[Mo(O)Br/sub 2/,(CN-C/sub 6/H/sub 3/,-2,6-Me/sub 2/)sub 3/] (1) was iso-lated. Compound 1 was characterized by spectroscopy (/sup 1/H-NMR, /sup 13/C{/sup 1/H}-NMR, IR) and X-ray diffraction. Crystallographic data for 1: triclinic space group P(equation omitted), a=9.172(2) (equation omitted), b = 11.550(3) (equation omitted), c = 15.106(3) (equation omitted), α = 100.44(2)°, β= 107.12(2)°, γ= 107.83(1)°, Z = 2, R(wR/sub 2/) = 0.0529(0.1344).

Investigation of Physicochemical Properties of Mo Carbide Utilizing Electron Spectroscopy

  • Jeong, Eunkang;Park, Juyun;Kang, Yong-Cheol
    • Journal of Integrative Natural Science
    • /
    • v.13 no.3
    • /
    • pp.87-91
    • /
    • 2020
  • Molybdenum carbide (MoCx) thin films (TFs) were deposited by reactive radio frequency (rf) magnetron co-sputtering in high vacuum chamber. We compared the properties of MoCx thin films as the rf power changed on C target. The result of alpha step measurement showed that the thickness of the MoCx TFs varied from163.3 to 194.86 nm as C power was increased from 160 to 200 W. The crystallinity of MoCx such as b-Mo2C, Mo2C, and diamond like carbon (DLC) structures were observed by XRD. The oxidation states of Mo and C were determined using high resolution XPS spectra of Mo 3d and C 1s were deconvoluted. Molybdenum was consisted of Mo, Mo4+, and Mo6+ species. And C was deconvoluted to C-Mo, C, C-O, and C=O species.

The Sensor Response for CO Gas of $LaMO_3$ and $LaFe_{1-x}CO_xO_3$ in Perovskite Type Oxides (Perovskite형 산화물 $LaMO_3$$LaFe_{1-x}CO_xO_3$의 일산화탄소가스에 대한 센서 응답 특성)

  • 임병오;손태원;권동혁
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.7-13
    • /
    • 1988
  • The oxides in perovskite type, $LaMO_3$ (M=Ni, Cr, Fe, Co), compared with gas sensors which have been used, were synthesised and then examined sensor response comparatively in order to make a thick film gas sensor having a good gas selectivity, durability and simple manufacturing. The oxides in perovskite type, $LaFe_{1-x}O_3$ (x=0.2, 0.4, 0.6, 0.8), which a part of Fe was replaced with Co, were examined with regard to their electric resistance with variable temperature and sensor response for carbon monoxide gas.

  • PDF

Magnetic Property and microstructure of melt-spun (Nd.Dy)-(Fe.Co.Al.M)-B ribbon (M:Sn, Mo) (급속응고법으로 제작된 (Nd.Dy)-(Fe.Co.Al.M)-B(M:Sn, Mo)리본의 자기특성과 미세구조)

  • Kim, Byeong-Cheol;Gang, Gi-Won;Yeo, Jeong-Su;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 1997
  • (NdㆍDy)-(FeㆍCoㆍAIㆍM)-B 합금에 Sn,Mo등을 첨가하여 그에 따른 미세구조와 열적안정성 및 자기적 특성 변화를 조사하였다. Sn과 Mo의 첨가는 (NdㆍDy)-(FeㆍCoㆍAIㆍM)-B 합금리본의 큐리온도를 크게 향상시켰으며 자기특성, 특히 보자력을 1KOe이상 증가시켰다. 그리고 이러한 현저한 보자력 증가는 입계형 defect인 disturbed grain boundary defect에 기인하는 것이라 판단되었다. 또한 Sn과 Mo 첨가원소는 irreversible loss를 각각 4%와 6% 감소시켜 리본자석의 열적안정성을 향상시켰다. 이는 Sn과 Mo의 첨가가 보자력을 크게 증가시켰기 때문이다. 한편 (NdㆍDy)-(FeㆍCoㆍAIㆍM)-B 리본자석들의 열저항온도(heat resistance temperature)는 irreversible loss와 직선관계를 이루었다.

  • PDF

Preparation of Carbide Composites for Ti-C-Mo system by HPCS(High-Pressure self-Combustion Sintering) Process (고압연소소결(HPCS)법을 이용한 Ti-C-Mo계 탄화물 복합체의 제조)

  • 최장민;이근행;류종화;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.451-458
    • /
    • 1999
  • TiC-Mo2C composites were prepared from Ti-C-Mo system by HPCS which has a great advantage of simulataneous synthesis and sintering In this study physical properties and microstructures of the com-posites were measured and observed to compare the sintering effects of Ni and Co each other : The results showed that the role of 5 wt% Ni in the sintering of the carbide composites was superior to that of 5wt% Co and the optimum content of Mo in the Ti-C-Mo system was 20wt% The carbide composites prepared under these two conditions had the best properties with 1.0% in apparent porosity 97.6% in relative density 19.1GPa in Vickers hardness and 5.3MPa$.$m1/2 in fracture toughness.

  • PDF

The Effects of Co-substitution on the Magnetic Properties of Nanocrystalline Nd-Fe-B based Alloy Containing α-Fe as Main Phase (Co 치환이 α-Fe기 초미세결정립 Nd-Fe-B계 합금의 자기특성에 미치는 영향)

  • Cho, D.H.;Cho, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.30-33
    • /
    • 2002
  • The Effects of Co-substitution in the nanocrystalline Nd-Fe-B-Mo-Cu alloys were investigated. $\alpha$-Fe based nanocrystalline Nd-Fe-B-Mo-Cu alloys were prepared by crystallization process of amorphous Nd-Fe-B-Mo-Cu alloy produced by rapid solidification process. The substitution of Co resulted in the decrease of grain size and improves the hard magnetic properties. The remanence, coercivity, and Curie temperature of nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy showed more improved magnetic properties than those of Co-free alloy. The grain size was measured to be about 15 nm. The coercivity, remanence and maximum energy product were 239 kA/m, 1.41, and 103.5 kJ/ $m^3$, respectively, for the nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy annealed for 0.6 ks at 640 $^{\circ}C$.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.