• Title/Summary/Keyword: $Mn^{2+}$ ion

Search Result 593, Processing Time 0.027 seconds

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

Characteristics in the Deposition of Mn-Zn Ferrite Thin Films by Ion Beam Sputtering Using a Single Ion Source (단일 이온원을 사용하는 이온빔 스퍼터링법에 의한 Mn-Zn 페라이트 박막의 증착 기구)

  • Jo, Hae-Seok;Ha, Sang-Gi;Lee, Dae-Hyeong;Hong, Seok-Gyeong;Yang, Gi-Deok;Kim, Hyeong-Jun;Kim, Gyeong-Yong;Yu, Byeong-Du
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.239-245
    • /
    • 1995
  • Mn-Zn ferrite thin films were deposited on $SiO_2(1000 \AA)/Si(100)$ by ion beam sputtering using a single ion source. A mosaic target consisting of a single crystal(ll0) Mn-Zn ferrite with a Fe metal strip on it was used. As-deposited films without oxygen gas flow have a wiistite structure due to oxygen deficiencies, which originated from the extra metal atoms sputtered from the metal strips during deposition. The as-deposited films with oxygen gas flow, however, have a spinel structure with (111) preferred orientation. The crystallization of thin films was maximized at the ion beam extraction voltage of 2.lkV, at which the deposited films are bombarded appropriately by the energetic secondary ions reflected from the target. As the extraction voltage increased or decreased from the optimum value, the crystallinity of thin films becomes poor owing to a weak and severe bombardment of the secondary ions, respectively. Crystallization due to the bombardment of the secondary ions was also maximized at the beam incidence angle of $55^{\circ}$. The as-deposited ferrite thin films with a spinel structure showed ferrimagnetism and had an in-plane magnetization easy axis.

  • PDF

Layered $LiCo_{x}Mn_{1-x}O_{2}$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_{2}$(0 ${\times}$ 0.14) oxides have been synthesized by hydrothermal treatment of $(Co_{x}Mn_{1-x})_{3}O_{4}$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}-NaMnO_{2}$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_{2}$, comparing to orthorhombic $LiMnO_2$.

  • PDF

Layered $LiCo_{x}Mn_{1-x}O_2$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_2$ (0 x 0.14) oxides have been synthesized by hydrothermal treatment of ($Co_{x}Mn_{1-x}$)$_3O_4$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}$-$NaMnO_2$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_2$, comparing to orthorhombic $LiMnO_2$.

  • PDF

Crystal Structure Changes of LiNi0.5Co0.2Mn0.3O2 Cathode Materials During the First Charge Investigated by in situ XRD

  • Lee, Sang-Woo;Jang, Dong-Hyuk;Yoon, Jeong-Bae;Cho, Yong-Hun;Lee, Yun-Sung;Kim, Do-Hoon;Kim, Woo-Seong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The structural changes of $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material for lithium ion battery during the first charge was investigated in comparison with $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ using a synchrotron based in situ X-ray diffraction technique. The structural changes of these two cathode materials show similar trend during first charge: an expansion along the c-axis of the unit cell with contractions along the a- and b-axis during the early stage of charge and a major contraction along the c-axis with slight expansions along the a- and b-axis near the end of charge at high voltage limit. In $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode, however, the initial unit cell volume of H2 phase is bigger than that of H1 phase since the c-axis undergo large expansion while a- and b- axis shrink slightly. The change in the unit cell volume for $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ during charge is smaller than that of $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$. This smaller change in unit cell volume may give the $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material a better structural reversibility for a long cycling life.

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 Ceramics

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.150-154
    • /
    • 2019
  • This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$, which has a rhombohedral-tetragonal phase boundary composition. $MnO_2$ and CuO-added $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$ ceramics sintered at a relatively low temperature of $1020^{\circ}C$ show a pure perovskite phase with no secondary phase. As the addition of $MnO_2$ and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of $MnO_2$.

A Study on the Hydrated and Dehydrated $Mn^{2+}$-Exchanged Zeolite A ($Mn^{2+}$-치환 제올라이트 A 의 수화 및 탈수 구조에 관한 연구)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.623-632
    • /
    • 1989
  • The positions and interaction energies of framework atoms and water molecules of $Mn^{2+}$-exchanged zeolite A were calculated using some potential energy functions and an optimization program. The sum of interaction energies of framework atoms in dehydrated $Mn_{4,5}Na_3-A$ was approximately the same as those of thermally stable $Ca^{2+}$-or $Mg^{2+}$-exchanged zeolite A. Since $Mn^{2+}$ ions can form good coordination bonds with framework oxygens even in dehydrated state, $Mn^{2+}$-exchanged zeolite A is considered to be thermally stable. The optimized positions of framework atoms and ions in this work are agreed well with the crystallographic data. Three groups of water molecules are found in hydrated $Mn^{2+}$-exchanged zeolite A; W(I) group of water molecules having only hydrogen bonds, W(II) group coordinated to $Na^+$ ion, and W(III) group coordinated to $Mn^{2+}$ ion. The average binding energy of each group of water molecules decrease in the order of W(III) > W(II) > W(I). The activation energies in the dehydration reaction of each group of water molecules increased in accordance with their binding energy.

  • PDF

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Photoluminescence Properties of $Zn_{2-x-y}SiO_4:Mn_x,\;M_y$ Phosphors ($Zn_{2-x-y}SiO_4:Mn_x,\;M_y$계 형광체의 발광특성)

  • Cho, Bong Hyun;Sohn, Kee Sun;Park, Hee Dong;Chang, Hyun Ju;Hwang, Taek Sung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.206-212
    • /
    • 1999
  • The main objective of the present investigation is to improve the photoluminescent performance of existing $Zn_2SiO_4:Mn$ phosphors by introducing a new co-dopant. The co-doping effect of Mg and/or Cr upon emission intensity and decay time was studied in the present investigation. The co-dopants incorporated into the $Zn_2SiO_4:Mn$ phosphors are believed to alter the internal energy state so that the change in emission intensity and decay time can be expected. Both Mg and Cr ions have a favourable influence on photoluminescence prpperties, for example, the Mg ion enhances the intensity of manganese green emission and the Cr ion shortens the decay time. The enhancement in emission intensity of $Zn_2SiO_4:Mn,\;Mg$ phosphors was interpreted by taking into account the result from the DV-X${\alpha}$ embedded cluster calculation. On the other hand, the energy transfer between Mn and Cr ions was found to be responsible for the shortening of decay time in$Zn_2SiO_4:Mn,\;Cr$ phosphors.

  • PDF