• Title/Summary/Keyword: $Mevacor^{\circledR}$

검색결과 2건 처리시간 0.015초

메바코 정 (로바스타틴 20 mg)에 대한 로바로드 정의 생물학적 동등성 (Bioequivalence of Lovaload Tablet to Mevacor Tablet (Lovastatin 20 mg))

  • 송우헌;김정민;조성완;김재현;임종래;신희종;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.283-288
    • /
    • 1998
  • Lovastatin, one of the potent cholesterol-lowering agents, is an inactive lactone prodrug which is metabolized to its active open acid, lovastatin acid (LVA). Bioequivalence study of two lovastatin preparations, the test drug ($Mevacor^{\circledR}$: Chungwae Pharmaceutical Co., Ltd.) and the reference drug ($Lovaload^{\circledR}$: Chong Kun Dang Pharmaceutical Co., Ltd.), was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Fourteen healthy male volunteers, $23.9{\pm}3.9$ years old and $67.6{\pm}8.0$ kg of body weight in average, were divided randomly into two groups and administered the drug orally at the dose of 160 mg as lovastatin in a $2{\times}2$ crossover study. Plasma concentrations of lovastatin acid were analysed by HPLC method for 12 hr after administration. The extent of bioavailability was obtained from the plasma concentration-time profiles of total lovastatin acid after alkaline hydrolysis of the plasma samples. By alkaline hydrolysis, trace amounts of unmetabolized lovastatin were converted to lovastatin acid. The $AUC_{0-12hr}$ was calculated by the linear trapezoidal rule method. The $C_{max}$ and $T_{max}$ were compiled directly from the plasma drug concentration-time data. Student's t-test indicated no significant differences between the formulations in these parameters. Analysis of variance (ANOVA) revealed that there were no differences in AUC, $C_{max}$, and $T_{max}$ between the formulations. The apparent differences between the formulations were far less than 20% (e.g., 7.07, 5.77 and 1.18% for AUC, $C_{max}$, and $T_{max}$, respectively). Minimum detectable differences(%) between the formulations at ${\alpha}=0.05$ and $1-{\beta}=0.8$ were less than 20% (e.g., 17.2, 15.1, and 15.9% for AUC, Cmax, and Tmax, respectively). The 90% confidence intervals for these parameters were also within ${\pm}20%$ (e.g.. $-5.20{\sim}19.3$, $-5.00{\sim}16.5$, and $-10.2{\sim}12.5%$ for AUC, $C_{max}$, and $T_{max}$, respectively). These results satisfied the bioequivalence criteria of KFDA guidelines, indicating that the two formulations of lovastatin were bioequivalent.

  • PDF

미세유화약물송달시스템을 이용한 로바스타틴의 생체이용률 향상 (Improvement of Bioavailability for Lovastatin using Self-microemulsifying Drug Delivery System)

  • 윤복영;강복기;정상영;이영원;이시범;황성주;육순홍;강길선;이해방;조선행
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.267-275
    • /
    • 2002
  • A self-microemulsifying drug delivery system (SMEDDS) was developed to increase the dissolution rate, solubility, and ultimately bioavailability of a poorly water soluble drug, lovastatin. SMEDDS was thε mixtures of oils, surfactants, and cosurfactants, which emulsify under conditions of gentle agitation, similar to those which would be encountered in the gastro-intestinal (GI) tract. Various types of self-emulsifying formulations were prepared using four types of oil (Capryol 90, Lauroglycol 90, Labrafil M 1944 CS and Labrafil M 2125), two surfactants (Cremophor EL and Tween 80), and three cosurfactants (Carbitol, PEG 400 and propylene glycol). Thε efficiency of emulsification was studied using a laser diffraction size analyzer to determine particle size distributions of the resultant emulsions. Optimized formulations selected for bioavailability assessment were Carpryol 90 (40%), Cremophor EL (30%) and Carbitol (30%). SMEDDS containing lovastatin (20 mg and 5 mg) were compared to a conventional lovastatin tablet $(Mevacor^{\circledR},\;20\;mg/tab)$ by the oral administration as prefilled hard gelatin capsules to fasted beagle dogs for in vivo study. The arεa under the serum concentration-time curve from time zero to the last measured time in serum, $AUC_{0{\rightarrow}24h}$, was significantly greater in SMEDDS, suggesting that bioavailability increase 130% and 192% by the SMEDDS, respectively. The self-emulsifying formulations of lovastatin afforded the improvement in absolute oral bioavailability relative to previous data of lovastatin tablet formulation. These data indicate the utility of dispersed self-emulsifying formulations for the oral delivery of lovastatin and potentially other poorly absorbed drugs.