• Title/Summary/Keyword: $Li_3V_2(PO_4)_3$

Search Result 36, Processing Time 0.021 seconds

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

The Electro-optical Propeties of Multilayer EL devices by blending TPD with P3TH as Emitting layer (TPD와 P3HT의 블렌드한 다층막 EL 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Gu, Hal-Bon;Kim, Hyung-Kon;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.542-545
    • /
    • 2002
  • High performance organic electroluminescnet(EL) devices which are composed of organic thin multilayer films are fabricated. The basic structure is ITO/Emitting layer/LiF/Al in which have a blended emitting layer. The emitting layer is consisted of a host material(N,N' diphenyl-N,N' (3-methyl phenyl)-l,l'-biphenyl-4,4'diamine)(TPD)) and a guest emitting material(poly(3-hexylthiophehe)(P3HT)). We think that the energy transfer in blending layer occurred from TPD to P3HT. Red emitting multilayer EL devices were fabricated using tris(8-hydroxyqunolinate) aluminum$(Alq_3)$ as electron transport material. The device structure of ITO/blending layer(TPD+P3HT)$/Alq_3$/LiF/Al was employed. In the Voltage-current-luminance characteristics of multilayer device, the device tum on at the 2V and the luminance of $10{\mu}W/cm^2$ obtain at l0V. Red emission peak at 640nm was observed with this device structure. We have presented evidence that the excitation energy migration between a polymeric host and guest has to be explained. And by using multilayer, the red light emitting EL device enhances not only Voltage-current-luminance characteristic but also stability of device.

  • PDF

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF

A Study on the H3PO4-Treated Soft Carbon as Anode Materials for Lithium Ion Batteries (리튬이온전지용 소프트카본 음극 소재의 인산 처리에 대한 연구)

  • Jo, Yong-Nam;Lee, En-Young;Park, Min-Sik;Hong, Ki-Joo;Lee, Sang-Ick;Jeong, Hu-Young;Lee, Zonghoon;Oh, Seung M.;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.207-215
    • /
    • 2012
  • Soft carbons are prepared by heat-treatment of cokes with different amounts of phosphoric acid (2, 4.5, and 10 wt% vs. cokes) at $900^{\circ}C$ to be used as anode materials for lithium ion batteries. From electrochemical measurements combined with structural analyses, we confirm that abundant nano-pores are existed in the microstructure of soft carbons prepared with the phosphoric acid, which are responsible for further lithium ion storage. Significant increase in reversible capacity of soft carbon is attained in proportion to added amount of the phosphoric acid. We also demonstrate the effect of structural modification with phosphoric acid on electrochemical performance of soft carbon to elucidate the origin of additional capacity.

Development of a Powertrain for 20kW Experimental Electric Vehicle Using Surface Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기 전동기를 이용한 20kW급 실험용 전기자동차 파워트레인 개발)

  • Park, Sung-Hwan;Lee, Jeong-Ju;Son, Jong-Yull;Lee, Young-Il
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.240-248
    • /
    • 2017
  • This paper describes the development of a powertrain for a 20 kW experimental electric vehicle using a surface-mounted permanent magnet synchronous motor (SPMSM) and its application to a test vehicle. Two 10 kW SPMSMs are used in the powertrain, and two-level inverters are developed by using IGBTs to derive these motors. To control the SPMSM, a control board based on a TMS320F28335 DSP module, which has fast arithmetic function and floating point operator, is used. We develop a 100 V/40 A battery pack, which includes $32{\times}4$ LiFePO4 battery cells using commercial BMS. A commercial on-board charger with 220 V (AC) input and 100 V (DC) and 18 A output is used to charge the battery pack. The performance of the developed vehicle, such as acceleration availability, maximum speed, and maximum power, is estimated based on vehicle dynamics and verified through experiments.

Production and Characterization of Ethanol- and Protease-Tolerant and Xylooligosaccharides-Producing Endoxylanase from Humicola sp. Ly01

  • Zhou, Junpei;Wu, Qian;Zhang, Rui;Yang, Yuying;Tang, Xianghua;Li, Junjun;Ding, Junmei;Dong, Yanyan;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% $KH_2PO_4$, and 0.5% peptone; initial pH 7.0; incubation time 72 h; $30^{\circ}C$; and 150 rpm. A considerable amount of the crude xylanase was induced using hulless barley bran or soybean meal as the carbon source, but a small amount of the enzyme was produced when supplementary urea was used as the nitrogen source to wheat bran. The crude xylanase showed apparent optimal cellulase-free xylanase activity at $60^{\circ}C$ and pH 6.0, more than 71.8% of the maximum xylanase activity in 3.0-30.0% (v/v) ethanol and more than 82.3% of the initial xylanase activity after incubation in 3.0-30.0% (v/v) ethanol at $30^{\circ}C$ for 2 h. The crude xylanase was moderately resistant to both acid and neutral protease digestion, and released 7.9 and 10.9 ${\mu}mol/ml$ reducing sugar from xylan in the simulated gastric and intestinal fluids, respectively. The xylooligosaccharides were the main products of the hydrolysis of xylan by the crude xylanase. These properties suggested the potential of the crude enzyme for being applied in the animal feed industry, xylooligosaccharides production, and high-alcohol conditions such as ethanol production and brewing.