• Title/Summary/Keyword: $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$

Search Result 4, Processing Time 0.021 seconds

Electrochemical Properties of Li1.1V0.75W0.075Mo0.075O2/Graphite Composite Anodes for Lithium-ion Batteries

  • Kim, Hyung-Sun;Kim, Sang-Ok;Kim, Yong-Tae;Jung, Ji-Kwon;Na, Byung-Ki;Lee, Joong-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.65-68
    • /
    • 2012
  • Novel type $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ powders were prepared by a solid-state reaction of $Li_2CO_3$, $V_2O_3$, $WO_2$ and $MoO_2$ precursors in a nitrogen atmosphere containing 10 mol % hydrogen gas, and assessed as anode materials in lithium-ion batteries. The specific charge and discharge capacities of the $Li_{1.1}V_{0.9-2x}W_xMo_xO_2$ anodes were higher than those of the bare $Li_{1.1}V_{0.9}O_2$ anode. The cyclic efficiency of these anodes was approximately 73.3% at the first cycle, regardless of the presence of W and Mo doping. The composite anode, which was composed of $Li_{1.1}V_{0.75}W_{0.075}Mo_{0.075}O_2$ (20 wt %) and natural graphite (80 wt %), demonstrated reasonable specific capacity, high cyclic efficiency, and good cycling performance, even at high rates without capacity fading.

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

Crystal Structure of Lithium Heptaborate, $Li_3B_7O_12$ ($Li_3B_7O_12$의 결정구조)

  • 박현민;조양구
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 1998
  • Single crystals of lithium heptaborate, Li3B7O12(M=288.49), have been grown and their structure was determined by the x-ray powder diffraction and the single crystal diffraction technique. It is found that the borate anion consists of two(B3O7)3- and (B3O8)5- groups a unit cell. The space group was determined to be P-1(Ci1) with a=6.500(3) Å, b=7.839(2) Å, c=8.512(1) Å, α=92.07(2)˚, β=104.97(2)˚, γ=99.35(3)˚, V=412.0(2) Å3, Z=2 Dx=2.32 g cm-3, MoKα, λ=0.71069 Å, μ=2.15cm-1, T=293K. The structure was refined to R=0.0339 and wR=0.0882 for 2296 unique reflections by the single crystal diffraction. By the x-ray powder diffraction, we could obtain the similar results.

  • PDF

Crystal Structure of Lithium Triborate, $LiB_3O_5$ ($LiB_3O_5$의 결정구조)

  • 박현민;조양구;김한균;정수진
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.138-142
    • /
    • 1998
  • Lithium triborate, LiB3O5(Mr=119.37), 단결정을 상단 종자정 융액법으로 성장시켰으며, 결정구조를 X-선 회절법으로 연구하였다. 결정계는 사방정계이며 공간군은 Pna21(No. 33)이다. 단위포의 상수는 a=8.432(1) , b=7.364(1) , c=5.110(1) , α=β=γ=90.00o, V=317.3(6) 3, V=4, Dx=2.50 gcm-3, MoKα1, λ=0.71069 , μ=2.3/cm, F(000)=232, T=293 K 이었다. 최종 구조의 오차인자는 520개 회절 점에서 각각 R=0.0222과 wR=0.0582이었다.

  • PDF