• Title/Summary/Keyword: $Li^+$ ion conductor

Search Result 15, Processing Time 0.027 seconds

Preparation and Properties of Inorganic-organic Hybrid $Li^+$ Ion Conductor by Sol-gel Process

  • Nishio, Keishi;Miyazawa, Tsutomu;Watanabe, Yuichi;Tsuchiya, Toshio
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Inorganic-organic hybrid Li$^+$ ion conductors were prepared by the sol-gel process. Tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG$_200$) and lithium bis (trifluoro-methylsulfony) imide were used as raw materials and $H_2O$ was used as a solvent. Hybrid Li$^+$ ion conductor prepared by the sol-gel process showed very high ion conductivities of log${\sigma}_R.T$(S/cm)=-3.73, log${\sigma}_60$(S/cm)=-3.00 at room temperature and $60^{\circ}C$, respectivery. Decomposition voltage was 3.1 V.

  • PDF

Electronic Structure, Bonding and Kithium Migration Effects of the Mixed Conductor $\beta-LiAl$ (혼합 전도체 $\beta-LiAl$의 전자구조, 결합과 Li 이온 이동에 따른 영향)

  • Jang, Gun-Eik;I.M Curelaru
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.194-198
    • /
    • 1996
  • Detailed expermental studies of theelectronic structure of the valence and conduction bands of the mixed conductor $\beta$-LiAlindicate that a quasi-gap opens at the Fermi level, and the conduction states are highlylocalized, as opposed to the theoretical band structure calculations that predict predominant metallic behavior. Evidence for complex lithium migration effects involving the surface of Lial , induced by particle (electron or ion) bombardment and mechanical treatment , has been obtained as a byproduct of these experiments.

  • PDF

Characterization of RF Sputter-deposited Sodium Phosphorous Oxynitride Thin Films as a Solid-state Sodium-ion Conductor

  • Chun, Sang-Eun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • We demonstrated the thin film deposition of sodium phosphorous oxynitride (NaPON) via RF magnetron sputtering of $Na_3PO_4$, as a solid-state Na-ion conductor similar to lithium phosphorous oxynitride (LiPON), which is a commonly used solid electrolyte. The deposited NaPON thin film was characterized by scanning electron microscopy, X-ray diffractometry, and electrochemical impedance spectroscopy, to investigate the feasibility of the solid-state electrolyte in several different cell configurations. The key properties of a solidstate electrolyte, i.e., ionic conductivity and activation energy, were estimated from the complex non-linear least square fitting of the measured impedance spectra at various temperatures in the range of $27-90^{\circ}C$. The ionic conductivity of the NaPON film was measured to be $8.73{\times}10^{-6}S\;cm^{-1}$ at $27^{\circ}C$, which was comparable to that of the LiPON film. The activation energy was estimated to be 0.164 eV, which was lower than that of the LiPON film (0.672 eV). The obtained values encourage the use of a NaPON thin film in the future as a reasonable solid-state electrolyte.

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

Lithium ion Transport Characteristics of Gel-Type Polymer Electrolytes Containing Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (리튬 p-[메톡시 올리고(에틸렌옥시)]벤젠설폰산염으로 제조된 젤형 고분자 전해질의 리튬 이온 운반 특성)

  • 허윤정;강영구;한규승;이창진
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.385-391
    • /
    • 2003
  • Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (LiEOnBS) with different repeating unit of ethylene oxide were synthesized and were used for preparing gel-polymer electrolytes. The conductivities and lithium ion transference number were measured as a function of Li-salt concentration and repeating unit of ethylene oxide of the LiEOnBS. The maximum conductivity of the resulting gel-polymer electrolyte was found to be 4.89${\times}$10$\^$-4/ S/cm (LiEO7.3BS, 0.5 M) at 30$^{\circ}C$. The lithium ion transference number (t$\sub$Li$\sub$+//) measurement were performed by means of the combination do polarization and ac impedance methods in gel-polymer electrolytes. Lithium ion transference number was measured to be in the range of 0.75∼0.92 for the LiEOnBS containing gel-polymer electrolytes. The maximum t$\sub$Li$\sub$+// was obtained to be 0.92 for the 0.1 M LiEOnBS containing polymer electrolytes. The synthesized LiEOnBS showed single ion transport like characteristics when n was large than 3.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

Potentiometric CO2 gas sensor based on the thin film electrolyte of Li+ ion conductor (박막 리튬이온전도체를 이용한 전위차 CO2 가스센서)

  • Noh, Whyo-Sub;Choi, Gwang-Pyo;Song, Ho-Geun;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.258-264
    • /
    • 2005
  • Li+-ion conducting ($Li_{3}PO_{4}$) thin films with thickness of $0.3{\mu}m$, $0.65{\mu}$, $1.2{\mu}$ were deposited on $Al_{2}O_{3}$ substrate at room temperature by thermal evaporation. They were sintered at $700^{\circ}C$ and $800^{\circ}C$ for 2 hours, respectively. Reference electrode and sensing electrode were printed on Au-electrode by silk printing method. The EMF and the ${\Delta}EMF$/dec were increased with increasing the electrolyte thickness and sintering temperature. The sample sintered at $800^{\circ}C$ was shown a good response and recovery characteristics more than those sintered at $700^{\circ}C$. The Nernst's slop of 75 mV per decade was obtained at operating temperature of $500^{\circ}C$.

Influence of Lithium Ions on the Ion-coordinating Ruthenium Sensitizers for Nanocrystalline Dye-sensitized Solar Cells

  • Cho, Na-Ra;Lee, Chi-Woo;Cho, Dae-Won;Kang, Sang-Ook;Ko, Jae-Jung;Nazeeruddin, Mohammad K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3031-3038
    • /
    • 2011
  • Ion-coordinating ruthenium complexes [cis-Ru(dcbpy)(L)(NCS)$_2$, where dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 1,4,7,10-tetraoxa-13-azacyclopentadecane, JK-121, or bis(2-(2-methoxy-ethoxy)ethyl) amine, JK-122] have been synthesized and characterized using $^1H$ NMR, Fourier transform IR, UV/vis spectroscopy, and cyclic voltammetry. The effect of $Li^+$ in the electrolyte on the photovoltaic performance was investigated. With the stepwise addition of $Li^+$ to a liquid electrolyte, the device shows significant increase in the photo-current density, but a small decrease in the open circuit voltage. The solar cell with a hole conductor, the addition of $Li^+$ resulted in a 30% improvement in efficiency. The JK-121 sensitized cells in the liquid and solid-state electrolyte give power conversion efficiencies of 6.95% and 2.59%, respectively, under the simulated sunlight.