• Title/Summary/Keyword: $La_{0.6}Sr_{0.4}MnO_3$

Search Result 31, Processing Time 0.031 seconds

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

Sol-Gel Synthesis and Transport Properties of $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$Granular Thin Films

  • Shim, In-Bo;Kim, Sung-Baek;Ahn, Geun-Young;Yun, Sung-Roe;Cho, Young-Suk;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We have used acetic acids ethanol and distilled water as a solvent to synthesize $La_{2/3}Sr_{1/3}Mn_{0.99}{^{57}}Fe_{0.01}O_3$(LSMFO) precursor. Crack-free LSMFO granular polycrystalline thin films have been deposited on thermally oxidized silicon substrates by spin coaling. The dependence of crystallization, surface morphology, magnetic and transport properties on annealing temperature was investigated. With increasing annealing temperature, the metal-semiconductor (insulator) transition temperature and the magnetic moment decrease while the resistivity increases. The lattice constants remain almost unchanged. For LSMFO thin films, spin-dependent interfacial tunneling and/or scattering magnetoresistance were observed. Our results indicate that the annealing temperature is very important in determining the intrinsic and extrinsic magnetotransport properties.

  • PDF

The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode (스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향)

  • Hwang, Ho-June;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.

Catalytic Characteristics of Perovskite-type Oxides under Mixed Methane and Oxygen Gases (메탄-산소 혼합가스 조건에서의 페롭스카이트계 산화물의 촉매특성 평가)

  • Ahn, Ki-Yong;Kim, Hyoung-Chul;Chung, Yong-Chae;Son, Ji-Won;Lee, Hae-Won;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.232-237
    • /
    • 2008
  • As the single chamber SOFC(SC-SOFC) showed higher prospect on reducing the operation temperature as well as offering higher design flexibility of SOFCs, lots of concerns have been given to investigate the catalytic activity of perovskite-type oxide in mixed fuel and oxidant conditions. Hence we thoroughly investigated the catalytic property of various perovskite-type oxides such as $La_{0.8}Sr_{0.2}MnO_3(LSM),\;La_{0.6}Sr_{0.4}CoO_3(LSC),\;La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3(LSCF),\;Sm_{0.5}Sr_{0.5}CoO_3(SSC),\;and\;Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}(BSCF)$ under the partial oxidation condition of methane which used to be given for SC-SOFC operation. In this study, powder form of each perovskite oxides whose surface areas were controlled to be equal, were investigated as functions of methane to oxygen ratios and reactor temperature. XRD, BET and SEM were employed to characterize the crystalline phase, surface area and microstructure of prepared powders before and after the catalytic oxidation. According to the gas phase analysis with flow-through type reactor and gas chromatography system, LSC, SSC, and LSCF showed higher catalytic activity at fairly lower temperature around $400^{\circ}C{\sim}450^{\circ}C$ whereas LSM and BSCF could be activated at much higher temperature above $600^{\circ}C$.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Effect of La0.7Sr0.3MnO3 addition on superconducting properties and local structure of (Bi, Pb)-2223 superconductor

  • M. A. Anugrah;R. P. Putra;J. Y. Oh;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • The effect of La0.7Sr0.3MnO3 (LSMO) addition on the superconducting property of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ ((Bi, Pb)-2223) polycrystalline samples was studied. LSMO (0.3 wt.% to 2.0 wt.%) added (Bi, Pb)-2223 samples were prepared by using a solid-state reaction method. The XRD analyses show that as the LSMO addition increases, the volume fraction of the Bi-2223 phase is gradually decreased. The critical temperature (Tc) exhibits a gradual decrease with a single transition as the LSMO amount increases up to 1.0 wt.%, but a further addition of LSMO induces an abrupt decrease of Tc with a dual transition. The analyses on the local structure of the CuO2 plane from the X-ray absorption fine structure (EXAFS) measurements showed that for the samples with low concentration of LSMO up to 1.0 wt.%, the Cu-O bond length and the CuO2 plane ordering do not degrade from the values of pure (Bi, Pb)-2223, while they get worsen with a further increase of LSMO addition. These results open up the possibility of LSMO as artificial pinning centers of the (Bi, Pb)-2223 system for power application.

Application of Bond Valence Method to Estimate the Valence Charge Distributi on in the Metal-to-Oxygen Bonding Spheres in Perovskites

  • Nhat, Hoang Nam;Chau, Dinh Van;Thuong, Dinh Van;Hang, Nguyen Thi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.75-92
    • /
    • 2015
  • This paper presents the application of the bond valence method to estimate the valence charge distribution in several perovskite systems: $La_{{\tilde{1}}x}Pb_xMnO_3$ (x=0.1-0.5), $La_{0.6}Sr_{0.{\tilde{4}}x}Ti_xMnO_3$ (x=0.0-0.25) and $La_{{\tilde{1}}x}Sr_xCoO_3$ (x=0.1-0.5); the reviewing of their crystal structures is also incorporated. The results showed the failure of the elastic bonding mechanism in all studied systems and revealed the general deficit of the valence charge in their unit cells. This valence deficit was not associated with the structural defects and was not equally localized in all coordination spheres. As the content of substitution increased, the charge deficit declined systematically from balanced level, signifying the transfer of valence charge from the ${\tilde{B}}O_6$ to ${\tilde{A}}O_{12}$ spheres. This transfer depended on the valence deviation of spheres and the average reached near 2 electron per unit cell. The possible impact of the limitted accuracy of the available structural data on the bond valence results has also been considered.