• Title/Summary/Keyword: $LaCoO_3$

Search Result 332, Processing Time 0.023 seconds

Preparation and Oxygen Permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer (다공성의 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$가 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 제조 및 투과 특성)

  • Kim, Jong-Pyo;Pyo, Dae-Woong;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer were prepared by extrusion and dip coating technique. XRD and SEM result showed the tubular membrane possessed the perovskite structure and porouscoating layer (thickness= about $2{\mu}m$) in surface. The oxygen permeation test was measured at condition of ambient air (feed side) and vacuum (permeate side) in the temperature range from 750 to $950^{\circ}C$. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer reached maximum $3.2mL/min{\cdot}cm^2$ at $950^{\circ}C$ and was higher than non-coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane. Long-term stability test result indicated that the oxygen permeation flux was quite stable during the 11 day.

Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating (플라즈마 스프레이 (Ca, Co)-Doped LaCrO3 코팅층의 치밀화 및 전기전도도)

  • Park, Hee-Jin;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.

The Co-luminescence Groups of Sm-La-pyridyl Carboxylic Acids and the Binding Characteristics between the Selected Doped Complex and Bovine Serum Albumin

  • Yang, Zhengfa;Tang, Ruiren;Tang, Chunhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1303-1309
    • /
    • 2012
  • A novel ligand N,N'-(2,6-pyridinedicarbonyl)bis[N-(carboxymethyl)] (L1) was designed and synthesized. Four co-luminescence groups of Sm-La-pyridyl carboxylic acids systems were researched, which are $K_4Sm_{(1-x)}-La_x(L_1)Cl_3{\cdot}y_1H_2O$, $K_4Sm_{(1-x)}La_x(L_2)Cl_3{\cdot}y_2H_2O$, $K_6Sm_{2(1-x)}La_{2x}(L_3)Cl_6{\cdot}y_3H_2O$, $K_4Sm_{(1-x)}La_x(L_4)Cl_3{\cdot}y_4H_2O$. The results indicated the addition of La(III) could sensitize the luminescence of Sm(III) obviously in a certain range, enhancing emission intensity of Sm-pyridyl carboxylic acids relative to the undoped ones. The optimal mole percentages of La(III) in the mixed ions for $L_1$, $L_2$, $L_3$, $L_4$ were confirmed to be 0.6, 0.5, 0.3, 0.6, respectively. The mechanism of the fluorescence enhancement effect was discussed in detail. Furthermore, the binding interaction of $K_4Sm_{0.4}La_{0.6}(L_4)Cl_3{\cdot}5H_2O$ with bovine serum albumin (BSA) have been investigated due to its potential biological activity. The binding site number n was equal to 1.0 and binding constant $K_a$ was about $2.5{\times}10^5\;L{\cdot}mol^{-1}$.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

Oxygen Permeation Properties of La0.7Sr0.3Co0.3Fe0.7O3-δ Membrane (La0.7Sr0.3Co0.3Fe0.7O3-δ 분리막의 산소투과특성)

  • Son, Sou Hwan;Kim, Jong-Pyo;Park, Jung Hoon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.310-315
    • /
    • 2009
  • Perovskite-type ceramic powder, $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$, have been synthesized successfully by the citrate method. As a result of TGA for precursor, metal-citrate complex in precursor was decomposed in the temperature range of $150{\sim}650^{\circ}C$. XRD analysis showed the single perovskite structure was observed over $1,000^{\circ}C$ without impurities. Typical dense membrane with 1.6 mm thickness has been prepared using as-prepared powder by pressing unilaterally and sintering at $1,300^{\circ}C$. The electrical conductivity of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane increased with increasing temperature at atmosphere of air and then decreased over $600^{\circ}C$ due to oxygen loss from the crystal lattice. The oxygen flux of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane in the range of 700 to $950^{\circ}C$ increased with the increasing temperature from 0.045 to $0.415ml/cm^2{\cdot}min$. The activation energy for oxygen permeation was calculated to be 89.17 kJ/mol.

A Study on Fabrication of La0.5Sr0.5CoO3Thin Films as an Electrode for Ferroelectric Memory by Self-patterning Technique (Self-patterning 기술을 이용한 강유전체 메모리 전극용La0.5Sr0.5CoO3박막의 제조에 관한 연구)

  • 손현수;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2003
  • Self-patterning of thin films using photosensitive sol solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. In this study,$La_{0.5}SR_{0.5}CoO_3$(LSCO) thin films as an electrode material for ferroelectric memories have been prepared by spin coating method using photosensitive sol solution. La-2methoxyethoxide, Sr-ethoxide, Co-2methoxyethoxide were used as starting materials. As UV exposure time to the LSCO gel thin film increased, the UV absorption peak intensity of metal${beta}$-diketonate decreased due to reduced solubility by M(metal)-O-M bond formation. Solubility difference by UV irradiation on LSCO gel thin film allows to obtain a fine patterning of thin film. The LSCO thin films annealed over$680{\circ}C$ in air showed perovskite phase and the lowest resistivity$(4{ imes}10^{-3}{Omega}cm)$ of the thin films were obtained by annealing at$740{\circ}C$.

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

A Study on the Oxidation of Carbon Monoxide for Exhaust of Car Engine by the $LaSrNiCoO_3$ Low Noble Metal Catalyst (저귀금속 $LaSrNiCoO_3$ 촉매에 의한 자동차 배기중의 일산화탄소의 산화반응에 관한 연구)

  • 이근배;이석희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.57-72
    • /
    • 1990
  • The oxidation of carbon monoxide on a catalyst, $LaSrNiCoO_3$ was investigatigated with a plug flow system. Kinetic quantities such as reaction-rate, reaction order and Arhenius-parameters at various reactor temperature from 200$^\circ$C to 300$^\circ$C were determined. Also, the optimum condition for the oxidation of carbon monoxide with this catalyst was determined and are as follows. Partial pressure of oxigen ; 428mmHg Partial pressure of carbon monoxide ; 332mmHg Mixed moral ratio of oxigen and Carbon monoxide ; 1.3 : 1 Total gas flow ; 224ml/min Reaction temperature ; 340$^\circ$C The reaction kinetic equation at the optimum condition, temperature range from 200$^\circ$C to 340$^\circ$C, are as follow. $$ $v = Ae^{6.5Kcal/RT} [CO]^{0.93 \sim 0.98} [O_2]^{0.42 \sim 0.50}$ $$ In addition to this, numerical calculation were performed to evaluate the mass and heat transfer effect on this system.

  • PDF

The Study on the Catalytic Performance and Characterization of La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas (모사된 석탄가스화 합성가스를 이용한 La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru)의 수성가스전이반응 활성 및 특성에 관한 연구)

  • Lee, Seul-Gi;Kwak, Jaehoom;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.543-549
    • /
    • 2013
  • In this study, $La_{0.9}Sr_{0.1}Cr_{0.7}M_{0.3}O_{3{\pm}{\delta}}$ (M=Mn, Ru, Fe, Ni) were prepared by sol-gel method and water gas shift reaction with simulated coal-derived syngas between $400{\sim}650^{\circ}C$ was conducted to evaluate the catalytic activity of prepared catalysts. Physico-chemical properties were characterized by XRD, BET, SEM-EDS and TPR. The formation of perovskite crystallite, $LaCrO_3$ was confirmed and the highest surface area was measured with $La_{0.9}Sr_{0.1}Cr_{0.7}Mn_{0.3}O_{3{\pm}{\delta}}$. Equilibrium conversion of CO above $550^{\circ}C$ was achieved except $La_{0.9}Sr_{0.1}Cr_{0.7}Fe_{0.3}O_{3{\pm}{\delta}}$. and methanation reaction was carried out as side reaction of water gas shift reaction with $La_{0.9}Sr_{0.1}Cr_{0.7}Ni_{0.3}O_{3{\pm}{\delta}}$ and $La_{0.9}Sr_{0.1}Cr_{0.7}Ru_{0.3}O_{3{\pm}{\delta}}$. Conclusively, $La_{0.9}Sr_{0.1}Cr_{0.7}M_n{0.3}O_{3{\pm}{\delta}}$ was the most suitable catalyst of water gas shift reaction above $500^{\circ}C$ for CO conversion and hydrogen production.

Electrical and Dielectric Properties, and Accelerated Aging Characteristics of Lanthania Doped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • The microstructure, electrical and dielectric properties, and stability against DC accelerated aging stress of the varistors, which are composed of quaternary system $ZnO-Pr_6O_{11}CoO-Cr_2O_3-based$ ceramics, were investigated for different $La_2O_3$ contents. The increase of $La_2O_3$ content led to more densified ceramics, whereas abruptly decreased the nonlinear properties by incorporating beyond 1.0mol%. The highest nonlinearity was obtained from 0.5mol% $La_2O_3$, with the nonlinear coefficient of 81.6 and the leakage current of $0.1{\mu}A$. The varistors doped with 0.5mol% $La_2O_3$ exhibited high stability, in which the variation rates of breakdown voltage, nonlinear coefficient, leakage current, dielectric constant, and dissipation factor were -1.1%, -3.7%, +100%, +1.4%, and +8.2%, respectively, for stressing state of $0.95V_{1mA}/150^{\circ}C/24h$.