• 제목/요약/키워드: $LPA_{3}$

검색결과 98건 처리시간 0.022초

Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling

  • Kim, Donghee;Li, Hui Ying;Lee, Jong Han;Oh, Yoon Sin;Jun, Hee-Sook
    • Experimental and Molecular Medicine
    • /
    • 제51권2호
    • /
    • pp.9.1-9.10
    • /
    • 2019
  • Mesangial cell proliferation has been identified as a major factor contributing to glomerulosclerosis, which is a typical symptom of diabetic nephropathy (DN). Lysophosphatidic acid (LPA) levels are increased in the glomerulus of the kidney in diabetic mice. LPA is a critical regulator that induces mesangial cell proliferation; however, its effect and molecular mechanisms remain unknown. The proportion of ${\alpha}-SMA^+/PCNA^+$ cells was increased in the kidney cortex of db/db mice compared with control mice. Treatment with LPA concomitantly increased the proliferation of mouse mesangial cells (SV40 MES13) and the expression of cyclin D1 and CDK4. On the other hand, the expression of $p27^{Kip1}$ was decreased. The expression of $Kr{\ddot{u}}ppel$-like factor 5 (KLF5) was upregulated in the kidney cortex of db/db mice and LPA-treated SV40 MES13 cells. RNAi-mediated silencing of KLF5 reversed these effects and inhibited the proliferation of LPA-treated cells. Mitogen-activated protein kinases (MAPKs) were activated, and the expression of early growth response 1 (Egr1) was subsequently increased in LPA-treated SV40 MES13 cells and the kidney cortex of db/db mice. Moreover, LPA significantly increased the activity of the Ras-related C3 botulinum toxin substrate (Rac1) GTPase in SV40 MES13 cells, and the dominant-negative form of Rac1 partially inhibited the phosphorylation of p38 and upregulation of Egr1 and KLF5 induced by LPA. LPA-induced hyperproliferation was attenuated by the inhibition of Rac1 activity. Based on these results, the Rac1/MAPK/KLF5 signaling pathway was one of the mechanisms by which LPA induced mesangial cell proliferation in DN models.

Effect of STAT3 on Lysophosphatidic Acid-Induced Oral Cancer Cell Invasion

  • Song, Zi Hae;Cho, Kyung Hwa;Kim, Jin Young;Lee, Hoi Young
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.141-146
    • /
    • 2019
  • Background: Oral cancer has a high incidence worldwide and has been closely associated with smoking, alcohol, and infection by the human papillomavirus. Metastasis is highly important for oral cancer survival. Lysophosphatidic acid (LPA) is a bioactive lipid mediator that promotes various cellular processes, including cell survival, proliferation, metastasis, and invasion. Signal transducer and activator of transcription (STATs) are transcription factors that mediate gene expression. Among the seven types of STATs in mammals, STAT3 is involved in invasion and metastasis of numerous tumors. However, little is known about the role of STAT3 in oral tumor invasion. In the present study, we hypothesized that STAT3 mediates LPA-induced oral cancer invasion. Methods: Immunoblotting was performed to analyze LPA-induced STAT3 activation. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed to assess the survival rates of YD-10B cells. STAT3 levels in LPA-treated oral tumor cells were evaluated by performing in vitro invasion assay. Results: To the best of our knowledge, this is the first study to demonstrate that LPA enhances STAT3 phosphorylation in oral cancer. In addition, treatment with WP1066, a selective inhibitor of STAT3, at a concentration that does not cause severe reduction in cell viability, significantly attenuated LPA-induced YD-10B cancer cell invasion. Conclusion: The results suggested that LPA induces oral tumor cells with greater invasive potential via STAT3 activation. Our findings provided important insights into the mechanisms underlying mouth neoplasms.

Effects of Gintonin-enriched fraction on the gene expression of six lysophosphatidic receptor subtypes

  • Lee, Rami;Lee, Byung-Hwan;Choi, Sun-Hye;Cho, Yeon-Jin;Cho, Han-Sung;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.583-590
    • /
    • 2021
  • Background: Gintonin, isolated from ginseng, acts as a ginseng-derived lysophosphatidic acid (LPA) receptor ligand and elicits the [Ca2+]i transient through six LPA receptor subtypes (LPARSs). However, the long-term effects of gintonin-enriched fraction (GEF) on the gene expression of six LPARSs remain unknown. We examined changes in the gene expression of six LPA receptors in the mouse whole brain, heart, lungs, liver, kidneys, spleen, small intestine, colon, and testis after long-term oral GEF administration. Methods: C57BL/6 mice were divided into two groups: control vehicle and GEF (100 mg/kg, p.o.). After 21-day saline or GEF treatment, total RNA was extracted from nine mouse organs. Quantitative-real-time PCR (qRT-PCR) and western blot were performed to quantify changes in the gene and protein expression of the six LPARSs, respectively. Results: qRT-PCR analysis before GEF treatment revealed that the LPA6 RS was predominant in all organs except the small intestine. The LPA2 RS was most abundant in the small intestine. Long-term GEF administration differentially regulated the six LPARSs. Upon GEF treatment, the LPA6 RS significantly increased in the liver, small intestine, colon, and testis but decreased in the whole brain, heart, lungs, and kidneys. Western blot analysis of the LPA6 RS confirmed the differential effects of GEF on LPA6 receptor protein levels in the whole brain, liver, small intestine, and testis. Conclusion: The LPA6 receptor was predominantly expressed in all nine organs examined; long-term oral GEF administration differentially regulated LPA3, LPA4, and LPA6 receptors in the whole brain, heart, lungs, liver, kidneys, small intestine, and testis.

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

Analysis of Lysophosphatidic Acid Receptor 1 Expression in the Uterus during the Estrous Cycle and Pregnancy in Pigs

  • Seo, Hee-Won;Kim, Min-Goo;Choi, Yo-Han;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.147-152
    • /
    • 2009
  • Lysophosphatidic acid (LPA), a simple phospholipid-derived mediator implicated in diverse biological actions, acts through the specific G-protein coupled receptors, LPA receptor (LPAR) $1{\sim}5$. Our previous study showed that LPAR3 is expressed in the uterine endometrium in a cell type- and stage-specific manner and LPA via LPAR3 increases PTGS2 expression in the uterine endometrium during the period of implantation. Although LPAR3 is considered to be predominant LPA receptor in the uterine endometrium, other LPA receptors might playa role to mediate LPA functions in the uterine endometrium during pregnancy. Among LPARs, we investigated expression of LPAR1 during the estrous cycle and pregnancy in this study. Uterine endometrial tissue samples were collected from day (D) 12 and D15 of the estrous cycle and from D12, D15, D30, D60, D90 and D114 of pregnancy. Northern blot analysis determined that LPAR1 mRNA was constitutively expressed in the uterine endometrial tissues during the estrous cycle and pregnancy of all stages. Analysis by immunoblotting revealed that LPAR1 proteins were present in the porcine uterine endometrium during the estrous cycle and pregnancy. Immunohistochemical experiments demonstrated that LP AR1 protein was localized to endometrial epithelium and stromal cell, specifically to nuclei of these cell types. Results in this study show that LPAR1 is constitutively expressed in the uterine endometrium during the estrous cycle and pregnancy. These results suggest that LPA via LPAR1 may playa role in the uterine endometrial function throughout pregnancy in pigs.

Effects of High Dose Lysophosphatidic Acid Supplement during IVC on Preimplantation Development of Porcine Embryos

  • Jin, Minghui;Yu, Il-Jeoung;Jeon, Yubyeol
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.275-285
    • /
    • 2017
  • Lysophosphatidic acid (LPA) is an important signaling molecule. Here, the effect and mechanism of LPA on the preimplantation development of porcine embryos during in vitro culture (IVC) was examined. Porcine embryos were cultured in porcine zygote medium (PZM-3) supplemented with $30{\mu}M$ LPA during different days. There was a significantly higher cleavage rate in Day 1-7 and significantly higher total cell number of blastocysts in Day 1-3 and Day 4-7. It was also found that messenger RNA (mRNA) expression level of PCNA, BCL2 and BAX in blastocysts obtained from D1-7 group were significantly higher and BCL2/BAX mRNA ratio in D1-3 group was significantly lower than control group but Day 4-7 and Day 1-7 groups were comparable with control group. Treatment with $20{\mu}M$ PLC inhibitor significantly decreased the embryo cleavage rate and blastocyst formation rate. Moreover, LPA as an activator of PLCs, enhanced the $30{\mu}M$ LPA + $20{\mu}M$ U73122 group embryo cleavage rate which similar with control group. In conclusion, the results suggest that treatment with LPA during IVC improves the porcine early embryo cleavage by activation of PLC signaling pathway and regulate the mRNA expression that contribute to total cell number of blastocysts during blastocyst formation.

동맥관으로 오인된 좌폐동맥 결찰에 대한 재수술 치험 (LPA Occulusion Due to the Erroneous Ligature of Patent Ductus Arteriosus; a report of 3 cases)

  • 송태승;윤태진;민경석;서동만
    • Journal of Chest Surgery
    • /
    • 제33권5호
    • /
    • pp.422-427
    • /
    • 2000
  • Confusion of a patent ductus arteriosus (PDA) for the descending thoracic aorta is a fatal error occurring occasionally in infants or neonates. As a result, the left pulmonary artery (LPA) may be misconceived as the PDA, and ligated. This surgical mishap of other hospital leads to serious congestive heart failure and loss of left lung function due to the underdevelopment in the peripheral vascular and alveolar structures in neonates and premature infants. In this report, 3 cases of LPA ligation and subsequent treatment are presented.

  • PDF

이동 통신 중계기용 선형 전력 증폭기 효율 개선에 관한 연구 (A Study on the Efficiency Improvement of Linear Power Amplifier for Mobile Communication Repeater Applications)

  • 안정식;이종악
    • 전기전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.215-220
    • /
    • 1999
  • 본 논문에서는 feedforward의 주 증폭기 전단에 predistorter를 사용하여 주 증폭기에서 만들어지는 이득과 위상 왜곡을 억제함으로써 넓은 대역에 걸쳐 좋은 IMD를 얻을 수 있도록 하였다. 이때 주 증폭기에서 만들어진 IMD는 저 출력 에러 증폭기의 사용을 가능하게 하므로 선형 전력 증폭기의 전체효율을 개선시킬 수 있다. 제작된 선형 전력 증폭기에서 주 증폭기(출력전력 10W/1톤, 중심 주파수는 850MHz, 2톤 채널 폭은 1MHz)의 IM3는 10.61dBc, predistorter와 feedforward를 결합한 LPA의 IM3는 32.50dBc이므로 약 22dB 개선된 결과를 얻었다. 그리고 주 증폭기의 효율이 30%, predistorter를 사용하지 않는 경우 효율은 20%, 그리고 사용한 경우의 효율이 27.4%이므로 약 7.4%의 개선된 결과를 얻었다.

  • PDF

Glue Embolization of Lymphopseudoaneurysm for Chylous Ascites after Retroperitoneal Surgery

  • Lyo Min Kwon;Saebeom Hur;Chang Wook Jeong;Hwan Jun Jae;Jin Wook Chung
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.376-383
    • /
    • 2021
  • Objective: To assess the safety and efficacy of lymphopseudoaneurysm (LPA) glue (n-butyl cyanoacrylate [NBCA]) embolization in the management of chylous ascites after retroperitoneal surgery. Materials and Methods: A retrospective analysis from January 2014 to October 2018 was performed in six patients (4 females and 2 males; mean age, 45.3 ± 14.2 years; range, 26-61 years) who underwent LPA embolization for chylous ascites developing after retroperitoneal surgery involving the perirenal space (four donor nephrectomies, one partial nephrectomy, and one retroperitoneal lymphadenectomy). After placing a percutaneous drainage catheter into the LPA or adjacent lymphocele, embolization was performed by filling the LPA itself with a mixture of glue and Lipiodol (Guerbet). Results: Daily drainage from percutaneously placed drains exceeded 300 mL/day despite medical and surgical treatment (volume: mean, 1173 ± 1098 mL; range, 305-2800 mL). Intranodal lymphangiography was performed in four of the six patients and revealed leakage in 2 patients. Percutaneous embolization of the LPA was successful in all patients using an NBCA and Lipiodol mixture in a ratio of 1:1-1:2 (volume: mean, 4.3 ± 1.1 mL; range, 3-6 mL). Chylous ascites was resolved and the drainage catheter was removed in all patients within 4 days after the procedure (mean, 2.0 ± 1.8 days; range, 0-4 days). No procedure-related complications or recurrence of chylous ascites occurred during a mean follow-up period of 37.3 months (range, 21.1-48.4 months). Conclusion: Glue embolization of LPA has the potential to be a feasible and effective treatment method for the management of chylous ascites after retroperitoneal surgery.

Inhibition of LPA5 Activity Provides Long-Term Neuroprotection in Mice with Brain Ischemic Stroke

  • Sapkota, Arjun;Park, Sung Jean;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.512-518
    • /
    • 2020
  • Stroke is a leading cause of long-term disability in ischemic survivors who are suffering from motor, cognitive, and memory impairment. Previously, we have reported suppressing LPA5 activity with its specific antagonist can attenuate acute brain injuries after ischemic stroke. However, it is unclear whether suppressing LPA5 activity can also attenuate chronic brain injuries after ischemic stroke. Here, we explored whether effects of LPA5 antagonist, TCLPA5, could persist a longer time after brain ischemic stroke using a mouse model challenged with tMCAO. TCLPA5 was administered to mice every day for 3 days, starting from the time immediately after reperfusion. TCLPA5 administration improved neurological function up to 21 days after tMCAO challenge. It also reduced brain tissue loss and cell apoptosis in mice at 21 days after tMCAO challenge. Such long-term neuroprotection of TCLPA5 was associated with enhanced neurogenesis and angiogenesis in post-ischemic brain, along with upregulated expression levels of vascular endothelial growth factor. Collectively, results of the current study indicates that suppressing LPA5 activity can provide long-term neuroprotection to mice with brain ischemic stroke.