• Title/Summary/Keyword: $LCN_2$

Search Result 14, Processing Time 0.016 seconds

The Treatment of Cyanide by Electro-Oxidation (전기산화를 이용한 Cyanide의 처리)

  • Kim, Hong-Tae;Lee, Young-Do;Kim, Kyu-Choul;Kim, Hak-Seok;Chun, Bong-Jun;Ku, Bong-Hun
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.335-342
    • /
    • 2008
  • This study based on electro-coagulation & oxidation reaction is applied to wastewater treatment. Electro-oxidation reaction is used to remove cyanide(CN) which is contained in plating wastewater. Cyanide is transferred by gases such as $NH_3,\;NO_x,\;CO_2$. Analysis result and removal efficiency of Cyanide which is contained in heavy metal wastewater of plating plant, are shown as following paragraph. In electrode arrangement experiment, removal efficiency of carbon electrode(-)/STS316L electrode(+) arrangement method is superior to carbon electrode(-)/carbon electrode(+) arrangement method. Removal efficiencies of cyanide in different HRT such as 30 min, 45 min, 60 min, 75 min and 90 min are 85.5%, 93.1%, 98.0%, 98.7% and 99.4% respectively in carbon electrode(-)/STS316L electrode(+) arrangement method. Finally we can estimate the critical point at HRT of 60 min which the variation of removal efficiency is decreased and HRT to obtain removal efficiency of less than 1 mg/LCN is minimum 90 min.

Identification of Gene-based Potential Biomarkers for Cephalexin-induced Nephrotoxicity in Mice

  • Park, Han-Jin;Oh, Jung-Hwa;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Cephalexin, one of most widely prescribed cephalosporin, has been reported to cause acute renal failure as a side effect in human and experimental animals. Although numerous animal studies have been reported for the cephalosporin nephrotoxicity, the molecular and cellular nephrotoxic mechanisms of cephalexin are still unknown. This investigation evaluated the time-dependent gene expression profile of kidney in mouse during cephalexin induced nephrotoxicity. C57BL/6 female mice were administered either saline or 1,000 mg/kg cephalexin intraperitoneally. Mice were sacrificed at 3, 6, and 24 hr after administration. Blood biochemical and histopathological results indicated cephalexin induced nephrotoxicity. Microarray experiment carried out using Affymetrix $GeneChip^{(R)}$. There were 198 informative genes that were significantly expressed >5-fold versus control at 3, 6, and 24 hr (p<0.01), of which 156 and 42 were up-and down-regulated, respectively. Major classes of up-regulated genes at 3, 6 hr included those involved in MAPK/Jak-STAT signaling pathway and immune response such as cytokine-cytokine receptor interaction and complement and coagulation cascades. At 24 hr, up-regulated genes were mainly involved in regeneration/repair and immune response; down-regulated genes were generally associated with transporters and intermediary metabolism. Among the up-regulated genes at 24 hr, several potential biomarkers on nephrotoxicity such as Kim-1, Fga, Timp1, and Slc34a2 were clustered in a same category. In addition, Tnfrsf12a and Lcn2 which were consistently up-regulated (>5 fold) were also included as potential biomarkers. These results may provide clues for elucidating the mechanism of cephalexin induced nephrotoxicity and evaluating potential biomarkers to assess nephrotoxicity.

Global Environmental Impacts Assessment of Power Generation Technologies with LCA Method (LCA를 통한 국내 발전기술의 글로벌 환경성 평가)

  • Chung Whan-Sam;Kim Seong-Ho;Kim Tae-Woon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.140-146
    • /
    • 2005
  • In this study, a quantitative environmental impacts assessment was performed for various power technologies with a lift cycle assessment (LCA) method. The LCA is regarded as a useful tool far analyzing diverse environmental impacts at a local, regional, and global aspect. The investigated power plants such as nuclear, coal, and LNC power systems were selected because they took share over $90\%$ of domestic elec-tricity supply in Korea. Furthermore, a wind power technology was included as a representative energy source out of Korean renewable energy systems. According to the three geological aspects, environmental impacts had been categorized into eight types. For these impact categories, characterization had been carried out for comparing environmental burdens of power systems under consideration. Then, normalization had been done in order to gain a better understanding of the relative size among impact categories.

Proteomic studies of putative molecular signatures for biological effects by Korean Red Ginseng

  • Lee, Yong Yook;Seo, Hwi Won;Kyung, Jong-Su;Hyun, Sun Hee;Han, Byung Cheol;Park, Songhee;So, Seung Ho;Lee, Seung Ho;Yi, Eugene C.
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.666-675
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG) has been widely used as an herbal medicine to normalize and strengthen body functions. Although many researchers have focused on the biological effects of KRG, more studies on the action mechanism of red ginseng are still needed. Previously, we investigated the proteomic changes of the rat spleen while searching for molecular signatures and the action mechanism of KRG. The proteomic analysis revealed that differentially expressed proteins (DEPs) were involved in the increased immune response and phagocytosis. The aim of this study was to evaluate the biological activities of KRG, especially the immune-enhancing response of KRG. Methods: Rats were divided into 4 groups: 0 (control group), 500, 1000, and 2000 mg/kg administration of KRG powder for 6 weeks, respectively. Isobaric tags for relative and absolute quantitation was performed with Q-Exactive LC-MS/MS to compare associated proteins between the groups. The putative DEPs were identified by a current UniProt rat protein database search and by the Gene Ontology annotations. Results: The DEPs appear to increase the innate and acquired immunity as well as immune cell movement. These results suggest that KRG can stimulate immune responses. This analysis refined our targets of interest to include the potential functions of KRG. Furthermore, we validated the potential molecular targets of the functions, representatively LCN2, CRAMP, and HLA-DQB1, by Western blotting. Conclusion: These results may provide molecular signature candidates to elucidate the mechanisms of the immune response by KRG. Here, we demonstrate a strategy of tissue proteomics for the discovery of the molecular function of KRG.