• Title/Summary/Keyword: $K_2SiF_6$

Search Result 309, Processing Time 0.026 seconds

ANALYSIS OF THE LiF:Mg,Cu,Si TL AND THE LiF:Mg,Cu,P TL GLOW CURVES BY USING GENERAL APPROXIMATION PLUS MODEL

  • Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul;Oh, Mi-Ae;Chung, Ki-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.155-164
    • /
    • 2009
  • In this paper, we used computerized glow curve deconvolution (CGCD) software with several models for the simulation of a TL glow curve which was used for analysis. By using the general approximation plus model, parameters values of the glow curve were analyzed and compared with the other models parameters (general approximation, mixed order kinetics, general order kinetics). The LiF:Mg,Cu,Si and the LiF:Mg,Cu,P material were used for the glow curve analysis. And we based on figure of merits (FOM) which was the goodness of the fitting that was monitored through the value between analysis model and TLD materials. The ideal value of FOM is 0 which represents a perfect fit. The main glow peak makes the most effect of radiation dose assessment of TLD materials. The main peak of the LiF:Mg,Cu,Si materials has a intensity rate 80.76% of the whole TL glow intensity, and that of LiF:Mg,Cu,P materials has a intensity rate 68.07% of the whole TL glow intensity. The activation energy of LiF:Mg,Cu,Si was analyzed as 2.39 eV by result of the general approximation plus(GAP) model. In the case of mixed order kinetics (MOK), the activation energy was analyzed as 2.29 eV. The activation energy was analyzed as 2.38 eV by the general order kinetics (GOK) model. In the case of LiF:Mg,Cu,P TLD, the activation energy was analyzed as 2.39 eV by result of the GAP model. In the case of MOK, the activation energy was analyzed as 2.55 eV. The activation energy was analyzed as 2.51 eV by the GOK model. The R value means different ratio of retrapping-recombination. The R value of LiF:Mg,Cu,Si TLD main peak analyzed as $1.12\times10^{-6}$ and $\alpha$ value analyzed as $1.0\times10^{-3}$. The R of LiF:Mg,Cu,P TLD analyzed as $7.91\times10^{-4}$, the $\alpha$ value means different ratio of initial thermally trapped electron density-initial trapped electron density (include thermally disconnected trap electrons density). The $\alpha$ value was analyzed as $9.17\times10^{-1}$ which was the difference from LiF:Mg,Cu,Si TLD. The deep trap electron density of LiF:Mg,Cu,Si was higher than the deep trap electron density of LiF:Mg,Cu,P.

Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan

  • Ma, Chang-Jin;Matuyama, Sigeo;Sera, Koichiro;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • This study was aimed to thoroughly estimate the characteristics of indoor particulate matter (PM) collected on subway platforms by the cooperative approach of semi-bulk and single particle analyses. The size-resolved PM and its number concentration were measured on the platform in a heavily traveled subway station in Fukuoka, Japan. Particle Induced X-ray Emission (PIXE) and micro-PIXE techniques were applied to the chemical analyses of semi-bulk and single particle, respectively. There was the close resemblance of timely fluctuation between PM number concentration and train service on the third basement floor (B3F) platform compared to the second basement floor (B2F) and its maximum level was marked in rush hour. Higher number counts in large particles ($>1{\mu}m$) and lower number counts in fine particles ($<1{\mu}m$) were shown on the platform compared to an above ground. PM2.5 accounted for 58.2% and 38.2 % of TSP on B3F and on B2F, respectively. The elements that were ranked at high concentration in size-resolved semi-bulk PM were Fe, Si, Ca, S, and Na. The major elements tending to have more elevated levels on B3F than B2F were Fe (4.4 times), Ca (17.3 times), and Si (46.4 times). Although concentrations were very low, Cr ($11.9ng\;m^{-3}$ on B3F, $2.4ng\;m^{-3}$ on B2F), Mn ($3.4ng\;m^{-3}$ on B3F, $0.9ng\;m^{-3}$ on B2F), and Pb ($0.6ng\;m^{-3}$ on B3F, $1.6ng\;m^{-3}$ on B2F) were detected from PM2.5. Individual PM was nearly all enriched in Fe with Si and Ca. Classifying and source profiling of the individual particles by elemental maps and particle morphology were tried and particles were presumably divided into four groups (i.e., train/rail friction, train-rail sparking, ballast/abrasive, and cement).

Low Temperature Deposition of Microcrystalline Silicon Thin Films for Solar Cells (태양전지용 미세결정 실리콘 박막의 저온 증착)

  • Lee, J.C.;Yoo, J.S.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1555-1558
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}c$-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_4$ Concentration$[F(SiH_4)/F(SiH_4)+F(H_2)]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c$-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c$-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_2H_6$ to $SiH_4$ gas. The solar cells with structure of Al/nip ${\mu}c$-Si:H/TCO/glass was fabricated with sing1e chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Copolymerization of Ethylene and 1-Hexene via Polymethylene Bridged Cationic Dinuclear Constrained Geometry Catalysts (폴리메틸렌 다리로 연결된 양이온 이핵 CGC를 이용한 에틸렌과 1-헥센의 공중합)

  • Bian, Feng Ling;Que, Dang Hoang Dan;Lyoo, Won-Seok;Lee, Dong-Ho;Noh, Seok-Kyun;Kim, Yong-Man
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2007
  • We have prepared the dinuclear half-sandwich CGC(constrained geometry catalyst) with polymethylene bridge $[Zr(({\eta}^5\;:\;{\eta}^1-C_9H_5SiMe_2NCMe_3)Me_2)_2\;[(CH_2)_n]$ [n=6(4), 9(5), 12(6)] by treating 2 equivalents of MeLi with the corresponding dichlorides compounds. To study the catalytic behavior of the dinuclear catalysts we conducted copolymerization of ethylene and 1-hexene in the presence of three kinds of boron cocatalysts, $Ph_3C^+[B(C_6F_5)_4]^-\;(B_1),\;B(C_6F_5)_3\;(B_3)$, and $Ph_3C^+[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^{2-}\;(B_2)$. It turned out that all active species formed by the combination of three dinuclear CGCs with three cocatalyst were very efficient catalysts for the polymerization of olefins. The activities increase as the bridge length of the dinuclear CGCs increases. At the same time the dinuclear cocatalyst exhibited the lowest activity among three cocatalysts. The prime observation is that the dinuclear cocatalyst gave rise to the formation of the copolymers with the least branches on the polyethylene backbone.

Deposition and Analysis of Fluorinated Amorphous Carbon Thin Films by PECVD (PECVD에 의한 비정질 불화탄소막의 증착 및 특성분석)

  • Kim, Ho-Woon;Shin, Jang-Kyoo;Kwon, Dae-Hyuk;Seo, Hwa-Il
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • The fluorinated amorphous carbon thin films (a-C:F) were deposited by PECVD(plasma enhanced chemical vapor deposition). The precursors were $C_{4}F_{8}$ which had a similar ratio of target film's carbon to fluorine ratio, and $Si_{2}H_{6}$/He for capturing excessive fluorine ion. We varied deposition condition of temperature and working pressure to survey the effect of each changes. We measured dielectric constant, composition, and etc. At low temperature the film adhesion to substrate was very poor although the growth rate was very high, the growth rate was very low at high temperature. The EDS(energy dispersive spectroscopy) result showed carbon and fluorine peak for films and Si peak for substrate. There was no oxygen peak.

Purification and Evaluation of Rice Bran Hydrolysates with Antimutagenicity

  • Heo, Seok;Hettiarachy, Navam;Park, Jong-Seok;Kim, Hyung-Il;Paik, Hyun-Dong;Yun, Mi-Suk;Lee, Si-Kyung
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.285-289
    • /
    • 2007
  • A 3% suspension of heat-stabilized defatted rice bran was treated with papain, followed by inactivating the enzyme by heat, and centrifuged. The supernatant was subjected to ultrafiltration, and fractions with various molecular sizes, F1 (>30 kDa), F2 (10-30 kDa), F3 (5-10 kDa), F4 (3-5 kDa), and F5 (3 kDa<), were freeze-dried, and evaluated for antimutagenicity by Ames test using Salmonella typhimurium TA 100 against phenazine methosulfate. The F3 fraction containing highest antimutagenicity from ultrafiltration was separated into 6 fractions by DEAE-Sephadex A-25 ion-exchange column chromatography (F3-1-F3-6). Each fractions having protein contents were pooled, dialyzed, freeze dried, and evaluated for antimutagenicity. Among the six fractions, the F3-1, F3-2, and F3-6 fractions showed antimutagenicity, which were 80.2, 53.4, and 58.6% at concentration of $100\;{\mu}g/plate$, respectively. These F3-1, F3-2, and F3-6 fractions were subjected to Sephadex G-50 gel filtration column chromatography for further purification. Among the purified fractions, the F3-1-1, F3-2-2, and F3-6-1 fractions showed antimutagenicity of 84.5, 58.6, and 69.8% at concentration of $100\;{\mu}g/plate$, respectively. It is thought that these peptides can find application for nutraceutical and pharmaceutical products.

A Study of Deposition Mechanism of Laser CVD SiO2 Film

  • Sung, Yung-Kwon;Song, Jeong-Myeon;Moon, Byung-Moo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.33-37
    • /
    • 2003
  • This study was performed to investigate the deposition mechanism of SiO$_2$ by ArF excimer laser(l93nm) CVD with Si$_2$H$\_$6/ and N$_2$O gas mixture and evaluate laser CVD quantitatively by modeling. With ArF excimer laser CVD, thin films can be deposited at low temperature(below 300$^{\circ}C$), with less damage and good uniformity owing to generation of conformal reaction species by singular wavelength of the laser beam. In this study, new model of SiO$_2$ deposition process by laser CVD was introduced and deposition rate was simulated by computer with the basis on this modeling. And simulation results were compared with experimental results measured at various conditions such as reaction gas ratio, chamber pressure, substrate temperature and laser beam intensity.

Experimental Study on Engineering Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Yang Il-Seung;Yun Hyun-Do;Kim Do-Su;Khil Bae-Su;Han Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.769-774
    • /
    • 2005
  • Fluosilicic acid(H2SiF6) is recovered as an aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded H3PO4 or HF. Generally, fluosilicates are the salts produced by the reaction of H2SiF6 and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. This study was performed to know mechanical properties and watertightness using fluosilicates based composite made from fluosilicates and other compounds. Mix proportions for experiments were modulated at 0.45 of water to cement ratio and $0.0-2.0\%$ of adding ratio of fluosilicates based composite. Evaluation for mechanical properties of concrete was conducted to know fresh state of concrete, hardening state of concrete, and watertightness. Evaluation for watertightness of concrete was carried out permeability, absorption test and porosity analysis. In addition. Scanning Electron Microscopy(SEM) and Energy Dispersive X-Ray(EDX) used for investigating micro-structure and atomic component distributed in hardened concrete. It is ascertained that characteristics of mechanical properties and watertightness was more improved than non-added because of packing role of fluosilicates based composite and pozzolanic reaction of soluble $SiO_2$. Also, concrete added fluosilicates based composite had a tendency to delay setting time and only $0.5\%$ addition of fluosilicates based composite delayed 150 minutes compared with non-added.

Fabrication and Characteristics of PIN Type Amorphous Silicon Solar Cell (PIN形 非晶質 硅素 太陽電池의 製作 및 特性)

  • Park, Chang-Bae;Oh, Sang-Kwang;Ma, Dae-Yeong;Kim, Ki-Wan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.30-37
    • /
    • 1989
  • The PIN type a-SiC:H/a-Si:H heterojunction solar cells were fabricated by using the rf glow discharge decomposition of $SiH_4$ mixed with $CH_4,B_2,H_6\;and\;PH_3.$ The efficiency of the solar cell of the $SnO_2/ITO$ was higher than that of ITO transparent oxide layer by 1.5%. The P layer was prepared with the thickness of $100{\AA}$ and $CH_4/SiH_4$ ration of 5. The I layer has been deposited on the P layer and it is not pure intrinsic but near N type. So $SiH_4$ mixed with $B_2H_6$ of 0.3ppm was used to change this N type nature to intrinsic having the thickness of 5000${\AA}$. And consecutively, the N layer was deposited with t ethickness of $400{\AA}$ using $SiH_4/PH_3$ mixtures. The solar cell demonstrated 0.94V of $V_{oc'}$ 14.6mA/cm of $J_{sc}$ and 58.2% of FF, resulting the efficiency of 8.0%. To minimize loss by the reflection of light, $MgF_2$ layer was coated on the lgass and the efficiency was improved by 0.5%. Therefore, the solar cell indicated overall efficiency of 8.5%.

  • PDF

Luminescence Characteristics of Blue Phosphor and Fabrication of a UV-based White LED (UV 기반 백색 LED용 청색 형광체의 발광특성 및 백색 LED 제조)

  • Jung, Hyungsik;Park, Seongwoo;Kim, Taehoon;Kim, Jongsu
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • We have synthesized a $CaMgSi_2O_6:Eu^{2+}$ blue phosphor via a solid-state reaction method. The $CaMgSi_2O_6:Eu^{2+}$ phosphor has monoclinic structure with a space group of C2/c (15), and an emission band peaking at 450 nm (blue) due to the $4f^7-4f^65d$ transition of the $Eu^{2+}ion$. The emission intensity at $100^{\circ}C$ is 54% of the value at room temperature. A white LED was fabricated by integrating a UV LED (400 nm) with our blue phosphor plus two commercial green and red phosphors. The white LED shows a color temperature of 3500 K with a color rendering index of 87 (x = 0.3936, y = 0.3605), and a luminous efficiency of 18 lm/W. The white LED shows a luminance maintenance of 97% after operation at 350 mA for 400 hours at $85^{\circ}C$.