• 제목/요약/키워드: $K_{Ca}$ channels

검색결과 360건 처리시간 0.024초

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • 제57권10호
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

ATP Modulation of Cloned Rat Brain Large-conductance $Ca^{2+}$-activated $K^+$ Channel by Protein Phosphorylation

  • Park, S.Y.;S. Chung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.63-63
    • /
    • 1999
  • Large conductance $Ca^{2+}$-activated $K^{+}$ channels (Maxi-K channel) have been implicated in many important physiological processes such as co-ordination of membrane excitability in neurons. Modulation of these channels are archived by the activity of various protein kinases. The most widely studied example of Maxi-K channel regulation by protein phosphorylation has been obtained using plasma membranes from the rat brain incorporated into lipid bilayers.(omitted)

  • PDF

Effects of Glibenclamide on $Na^+-K^+$ Pump and L-type $Ca^{2+}$ Channel in Guinea-pig Ventricular Myocytes

  • Lee, So-Young;Lee, Chin O.
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.81-81
    • /
    • 2003
  • Glibenclamide, a sulfonylurea derivative, has been used in tile treatment of type II diabetes mellitus. Recent studies provided evidence that glibenclamide, in addition to blocking ATP-sensitive $K^{+}$ channels, also affected Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels in noncardiac cells. The effect of glibenclamide on the cardiac muscle is not clearly known. In the present study, the effects of glibenclamide on intracellular Na$^{+}$ concentration ([Na$^{+}$]$_{i}$ ), twitch tension, $Ca^{2+}$ transient, and membrane potential were investigated in isolated guinea-pig ventricular myocytes. Glibenclamide at concentration of 200 $\mu$M increased [Na$^{+}$]$_{i}$ by 3.9$\pm$0.4 mM (mean $\pm$ SE, n=12), decreased twitch tension by 36.1 $\pm$ 4.0% (mean $\pm$ SE, n=8), reduced $Ca^{2+}$ transient by 24.4$\pm$5.1% (mean $\pm$ SE, n=3), slightly depolarized diastolic membrane potential, and did not change action potential duration. To determine whether inhibitions of Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels are responsible for the increase of [Na$^{+}$]$_{i}$ and the decrease of twitch tension, we tested effects of glibenclamide on Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current. Glibenclamide decreased Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current in a concentration-dependent manner.t in a concentration-dependent manner.

  • PDF

흰쥐 부신수질 크로마핀세포의 칼슘통로 유형 (Calcium Channel Subtype in Rat Adrenal Chromaffin Cells)

  • Goo, Yong-Sook
    • 한국의학물리학회지:의학물리
    • /
    • 제12권1호
    • /
    • pp.59-70
    • /
    • 2001
  • 부신수질 크로마핀세포는 아세틸콜린에 반응하여 카테콜아민을 분비한다. 카테콜아민이 분비되기 위하여는 세포외 칼슘이 절대적으로 필요한데 이는 막전압 의존성 칼슘통로를 통하여 칼슘이 세포 속으로 유입되어야 분비기전이 시작됨을 시사한다. 부신수질 크로마핀 세포를 단일세포로 분리한 후 패치클람프 테크닉을 적용하여 여러 종류의 칼슘통로가 존재한다는 것이 알려져 있으나 아직 종이 달라짐에 따라 다른 칼슘통로가 존재하는 지 여부가 확실하지 않다. 그러므로 본 연구에서는 흰쥐 부신수질 크로마핀 세포를 대상으로 하여 단일 세포 패치클람프 테크닉을 적용하여 이 세포에 존재하는 다양한 칼슘통로의 존재를 확인하고자 하였다. L형 칼슘통로 억제제인 nicardipine, N형 칼슘통로 억제제인 $\omega$-CgTx GVIA, P형 칼슘통로 억제제인 $\omega$-AgaTx IVA를 사용하여 L형, N형, P형 칼슘통로가 흰쥐 부신수질 세포에 존재함을 확인하였고 개개의 칼슘통로가 전체 칼슘전류에 기여하는 정도는 L형 >N형> P형이었다.

  • PDF

Voltage-sensitive Calcium Channels Are Linked to P2X Purinoceptors in PC12 Cells

  • Hur, Eun-Mi;Park, Tae-Ju;Kim, Kyong-Tai
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.68-68
    • /
    • 1999
  • Extracellular A TP is known to function as a neurotransmitter and as a modulator in the variety of cell types. In PC12 cells, extracellular A TP elevates [Ca$\^$2+/]j through receptor-operated Ca$\^$2+/ channels and through the activation of phospholipase C, thereby facilitating the secretion of neurotransmitters.(omitted)

  • PDF

Influence of Nicorandil on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Koh, Young-Youp;Lee, Eun-Sook;No, Hae-Jeong;Woo, Seong-Chang;Chung, Joong-Wha;Seoh, Yoo-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권3호
    • /
    • pp.97-106
    • /
    • 2007
  • The present study was attempted to investigate the effect of nicorandil, which is an ATP-sensitive potassium ($K_{ATP}$) channel opener, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of nicorandil ($0.3{\sim}3.0mM$) into an adrenal vein for 90 min produced relatively dose-and time-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $k^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, $100{\mu}M$ for 2 min), McN-A-343 (a selective muscarinic $M_1$ receptor agonist, $100{\mu}M$ for 4 min), Bay-K-8644 (an activator of L-type dihydropyridine $Ca^{2+}$ channels, $10{\mu}M$ for 4 min) and cyclopiazonic acid (an activator of cytoplasmic $Ca^{2+}$-ATPase, $10{\mu}M$ for 4 min). In adrenal glands simultaneously preloaded with nicorandil (1.0 mM) and glibenclamide (a nonspecific $K_{ATP}$-channel blocker, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of nicorandil-treatment only. Taken together, the present study demonstrates that nicorandil inhibits the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this inhibitory effect of nicorandil may be mediated by inhibiting both $Ca^{2+}$ influx and the $Ca^{2+}$ release from intracellular store through activation of $K_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that nicorandil-sensitive $K_{ATP}$ channels may play an inhibitory role in the regulation of the rat adrenomedullary CA secretion.

Synthesis and $BK_{ca}$-channel Opening Activity of Substituted l0-H-Benzo[4-5]furo[3,2-b]indole-carboxylic acids

  • Gormemis, Ahmet-Erkam;Soo, Ha-Tal;Park, Chul-Seung;Kim, Yong-Chul
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.188.2-188.2
    • /
    • 2003
  • Large-conductance $Ca^{2+}$ activated potassium channels $(BK_{ca})$ are widely distributed and play key roles in various cell functions. In nerve cells, B $K_{ca}$ channels shorten the duration of action potentials and block $Ca^{2+}$ entry thereby repolarizing excitable cells after excitation. $(BK_{ca})$ channel opening has been postulated to confer neuroprotection during stroke and has attracted attention as a means for therapeutic intervention in asthma, hypertension, convulsion, and traumatic brain injury. (omitted)

  • PDF

Role of $K^+$ Channels to Resting Membrane Potential of Rabbit Middle Cerebral Arterial Smooth Muscle Cells

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Kim, Yun-Hee;Sim, Jae-Hong;Kim, Soo-Cheon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.547-554
    • /
    • 1999
  • The aim of the present study is to investigate the contribution of $Ca^{2+} ?activated\;K^+\;(K_{Ca})$ channels and delayed rectifier $K^+\;(K_V)$ channels to the resting membrane potential (RMP) in rabbit middle cerebral arterial smooth muscle cells. The RMP and membrane currents were recorded using the whole-cell patch configuration and single $K_{Ca}$ channel was recorded using the outside-out patch configuration. Using the pipette solution containing 0.05 mM EGTA, the RMP was $-25.76{\pm}5.08$ mV (n=12) and showed spontaneous transient hyperpolarizations (STHPs). The membrane currents showed time- and voltage-dependent outward currents with spontaneous transient outward currents (STOCs). When we recorded the membrane potential using the pipette solution containing 10 mM EGTA, the RMP was depolarized and did not show STHPs. The membrane currents showed no STOCs but only showed slowly inactivating outward currents. External TEA (1 mM) reversibly inhibited the STHPs, depolarized the RMP, reduced the membrane currents, abolished STOCs, and decreased the open probability of single $K_{Ca}$ channel. When $K_V$ currents were isolated, the application of 4-AP (5 mM) depolarized the RMP. The important aspect of our results is that $K_{Ca}$ channel is responsible for the generation of the STHPs in the membrane potential and plays an important role in the regulation of the RMP and $K_V$ channel is also responsible for the regulation of the RMP in rabbit middle cerebral arterial smooth muscle cells.

  • PDF

Nimodipine as a Potential Pharmacological Tool for Characterizing R-Type Calcium Currents

  • Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.511-519
    • /
    • 2001
  • Nimopidine, one of dihydropyridine derivatives, has been widely used to pharmacologically identify L-type Ca currents. In this study, it was tested if nimodipine is a selective blocker for L-type Ca currents in sensory neurons and heterologous system. In mouse dorsal root ganglion neurons (DRG), low concentrations of nimodipine $(<10\;{\mu}M),$ mainly targeting L-type Ca currents, blocked high-voltage-activated calcium channel currents by ${\sim}38%.$ Interestingly, high concentrations of nimodipine $(>10\;{\mu}M)$ further reduced the 'residual' currents in DRG neurons from ${\alpha}_{1E}$ knock-out mice, after blocking L-, N- and P/Q-type Ca currents with $10\;{\mu}M$ nimodipine, $1\;{\mu}M\;{\omega}-conotoxin$ GVIA and 200 nM ${\omega-agatoxin$ IVA, indicating inhibitory effects of nimodipine on R-type Ca currents. Nimodipine $(>10\;{\mu}M)$ also produced the inhibition of both low-voltage-activated calcium channel currents in DRG neurons and ${\alpha}_{1B}\;and\;{\alpha}_{1E}$ subunit based Ca channel currents in heterologous system. These results suggest that higher nimodipine $(>10\;{\mu}M)$ is not necessarily selective for L-type Ca currents. While care should be taken in using nimodipine for pharmacologically defining L-type Ca currents from native macroscopic Ca currents, nimodipine $(>10\;{\mu}M)$ could be a useful pharmacological tool for characterizing R-type Ca currents when combined with toxins blocking other types of Ca channels.

  • PDF

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.