• Title/Summary/Keyword: $K^+$-beta-aluminas

Search Result 2, Processing Time 0.015 seconds

Densification Study of K+-beta-aluminas Prepared from Their Ultra-fine Milled Powder (초미세 분쇄 분말로 제조된 K+-beta-aluminas의 치밀화 연구)

  • Shin, Jae-Ho;Kim, Woo-Sung;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.648-652
    • /
    • 2005
  • A super ionic conductor, $K^+$-beta-aluminas, which is known to be difficult to obtain in the form of dense sintered density under atmospheric pressure, was pulverized to 350 nm mean particle size using attrition mill. The sample were pressed into tablet form by uniaxial pressing. The specimen was sintered under atmospheric pressure in powder form. Sintering temperature range was $1400^{\circ}C$ to $1650^{\circ}C$ at $50^{\circ}C$ intervals. Additionally, zone sintering was carried out to control the growth grain at high temperature ($1600^{\circ}C$). The density of specimens that were sintered at $1600^{\circ}C$ and $1650^{\circ}C$, and sintered at $1600^{\circ}C$ by zone sintering were about 93% and 95%, respectively. In the case of the lengthened sintering time to 2 h, the density of specimen was reduced to lower than 90%, since the particles were grown to the duplex microstructure.

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF