Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.174-174
/
2017
To cope with phosphate (Pi) deficient stress, plants modulate various physiological and developmental processes, such as gene expression, Pi uptake and translocation, and root architecture changes. Here, we report the identification and characterization of novel activation-tagged mutant involved in Pi starvation signaling in Arabidopsis. The hpd (${\underline{h}ypersensitive}$ to ${\underline{P}i}$$ {\underline{d}eficiency}$) mutant exhibits enhanced phosphate uptake and altered root architectural change under Pi starvation compared to wild type. Expression analysis of auxin-responsive DR5::GUS reporter gene in hpd mutant indicated that auxin translocation in roots under Pi starvation are suppressed in hpd mutant plants. Impaired auxin translocation in roots of hpd mutant was attributable to abnormal root architecture changes in Pi starvation conditions. Our results indicated that abnormal auxin translocation in hpd mutant might be due to mis-regulation of auxin efflux carrier proteins, PIN-FORMED (PIN) 1, and 2 under Pi starvation conditions. Not only expression levels but also expression domains of PIN proteins were altered in hpd mutant in response to Pi starvation. Molecular genetic analysis of hpd mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3'-end processing. The results suggest that mRNA processing plays crucial roles in Pi homeostasis as well as developmental reprograming in response to Pi deprivation in Arabidopsis.
In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.
The present study was to investigate the effect of glipizide on the pharmacokinetics of losartan in rats. Losartan was administered intravenously (3 mg/kg) and orally (9 mg/kg) in the presence and absence of glipizide (0.3 and 1 mg/kg) to rats. The pharmacokinetic parameters of losartan were significantly altered by the presence of glipizide compared with the control group (given losartan alone). Presence of glipizide significantly (p<0.05, 0.3 mg/kg) increased the area under the plasma concentration-time curve (AUC) of losartan by 48.2% and peak plasma concentration ($C_{max}$) of losartan by 47.4%. Consequently, the absolute bioavailability (AB%) of losartan in the presence of glipizide was 38%, which was enhanced significantly (p<0.05) compared to that in the oral control group (25%). The relative bioavailability (RB%) of losartan increased by 1.18- to 1.48-fold in the presence of glipizide. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($T_{1/2}$) of losartan in the presence of glipizide. In contrast, glipizide did not affect the pharmacokinetics of intravenous losartan. In conclusion, the presence of glipizide significantly enhanced the oral bioavailability of losartan, implying that glipizide might be mainly to inhibit the cytochrome P450 (CYP) 2C9-mediated metabolism, resulting in reducing gastrointestinal and/or hepatic first-pass metabilism of losartan rather than in reducing P-glycoprotein-mediated efflux and renal elimination of losartan. Concurrent use of glipizide with losartan should require close monitoring for potential drug interactions.
The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration($IC_{50}$) of 4.1 ${\mu}M$ and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the $AUC_{0-{\infty}}$ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.
The effects of prolactin and vasopressin on the regulation of amniotic fluid (AF) volume and its $Na^{+}$ concentration $([Na^{+}])$ through the membrane surrounding the AF during increase in AF volume due to fetal urination were studied. About 70% of AF volume was replaced with normal isotonic saline solution. Isotonic saline solution (0.5 ml) containing Censored and LiCl was introduced into each amniotic sac. Vasopressin (25 ng/ml) or prolactin (1 mg/ml) of AF was then injected into experimental amniotic sac. The concentrations of Congored, $Li^{+}$, and $Na^{+}$ were measured at 30 and 60 min intervals after injection. Af samples with decreased Censored concentration ([CR]) during the period of 30 - 60 min were analyzed. The percentage change of $[Na^{+}]$ and the rate of $Li^{+}$ movement during this period were calculated, and the effects of vasopressin and prolactin on them were evaluated. Fellowing results were obtained: 1. The rate of reduction of [CR] in the AF was retarded by vasopressin or prolactin injection. 2. The rate of reduction of $[Li^{+}]$ in the AF was also retarded by vasopressin or prolactin injection. 3. The rate of reduction of $[Li^{+}]$ in the AF was less retarded by vasopressin than that of [CR]. 4. $[Na^{+}]$ changed to approach to the normal level, but this was markedly retarded by prolactin injection. 5. Direction of $Li^{+}$ movement was correlated with the change in $[Na^{+}]$ but it always moved out of the amniotic sac even when the $[Na^{+}]$ increased in vasopressin injected AF. From the above results, it is suggested that vasopressin in the AF triggers the fetus to urinate, and then the membranes surrounding the AF regulate osmolarity by efflux of $Na^{+}$. We suggest that prolactin facilitates water outflow across the amniotic membrane during increase in AF volume, in contrast to a constant volume, whereas regulation of $[Na^{+}]$ is partly restricted by prolactin.
Purpose: The aim of this study was to investigate the effect of nimodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Methods: Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of nimodipine (0.5 or 2 mg/kg) in rats. The effect of nimodipine on the P-glycoprotein as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Results: Nimodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of $10.2{\mu}M$. Compared to those animals in the oral control group (warfarin without nimodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.5 mg/kg, P<0.05; 2 mg/kg, P<0.01) by 31.3-57.6%, and the peak plasma concentration ($C_{max}$) was significantly higher (2 mg/kg, P<0.05) by 29.4% after oral administration of warfarin with nimodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.31- to 1.58-fold and the absolute bioavailability of warfarin with nimodipine was significantly greater by 64.1-76.9% compared to that in the control group (48.7%). In contrast, nimodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Conclusion: Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism rather than P-glycoprotein-mediated efflux by nimodipine.
The pharmacokinetics of nifedipine was studied after oral coadministration of nifedipine (5 mg/kg) with quercetin (1.5, 7.5, 15 and 30 mg/kg, respectively) and 0.5 h or 3days pretreatment with quercetin (1.5 and 7.5mg/kg) in rabbits. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the plasma concentration of nifedipine, but not significant in coadministraiton. The area under the plasma concentration-time curve (AUC) and the peak concentration $(C_{max})$ of nifedipine pretreated with quercetin were increased significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) compared to the control. By coadministration of quercetin, only 7.5 mg/kg of quercetin increased plasma AUC and $C_{max}$ of nifedipine significantly (p<0.05) compared to the control. Plasma AUC of intravenous nifedipine (1 mg/kg) is $4235\;{\pm}\;1192\;ng/ml{\cdot}hr$. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the absolute bioavailability (AB%) of nifedipine to 23.9-29.2% compared to the control (17.8%). Coadministration of quercetin showed no significant effect on the AB% of nifedipine except for 7.5 mg/kg. It is suggested that quercetin alters disposition of nifedipine by inhibition of P-glycoprotein efflux pump and its first-pass metabolism. The dosage of nifedipine should be adjusted when it is administered chronically with quercetin in a clinical situation.
This study was designed to investigate the effects of ticlopidine on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) or intravenously (1 mg/kg) without or with oral administration of ticlopidine (4, 12 mg/kg) to rats. The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 activity were also evaluated. Ticlopidine inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $25.2\;{\mu}M$. In addition, ticlopidine could not significantly enhance the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group (given carvedilol alone), the area under the plasma concentration-time curve (AUC) was significantly (12 mg/kg, p<0.05) increased by 14-41%, and the peak concentration ($C_{max}$) was significantly (12 mg/kg, p<0.05) increased by 10.7-73.3% in the presence of ticlopidine after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.14- to 1.41-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of ticlopidine was increased by 36.2-38.5%. Compared to the i.v. control, ticlopidine could not significantly change the pharmacokinetic parameters of i.v. administered carvedilol. The enhanced oral bioavailability of carvedilol may result from inhibition of CYP2C9-mediated metabolism rather than P-gpmediated efflux of carvedilol in the intestinal and/or in liver and renal eliminatin of carvedilol by ticlopidine.
Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.
The present study was to investigate the effect of naringin, a flavonoid, on the pharmacokinetics of losartan in rats. Pharmacokinetic parameters of losartan in rats were determined after an oral administration of losartan (9 mg/kg) in the presence or absence of naringin (0.5, 2.5 and 10 mg/kg). The pharmacokinetic parameters of losartan were significantly altered by the presence of naringin compared with the control group (given losartan alone). Presence of naringin significantly (p<0.05, 2.5 mg/kg; p<0.01, 10 mg/kg) increased the area under the plasma concentration?time curve (AUC) of losartan by 43.7~63.0% and peak plasma concentration ($C_{max}$) of losartan by 31.7~45.5%. Consequently, the absolute bioavailability (AB) of losartan in the presence of naringin was 43.8~62.9%, which was enhanced significantly (p<0.05, p<0.01) compared to that in the oral control group (22.4%). The relative bioavailability (R.B.) of losartan increased by 1.44- to 1.63-fold in the presence of naringin. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($t_{1/2}$) of losartan in the presence of naringin. In conclusion, the presence of naringin significantly enhanced the oral bioavailability of losartan, implying that presence of naringin might be mainly effective to inhibit the cytochrome P450 (CYP)3A-mediated metabolism, resulting in reducing gastrointestinal and hepatic first-pass metabilism and Pglycoprotein (P-gp)-mediated efflux of losartan in small intestine. Concurrent use of naringin or naringin-containing dietary supplement with losartan should require close monitoring for potential drug interactions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.