• Title/Summary/Keyword: $K^+$ Homeostasis

Search Result 856, Processing Time 0.029 seconds

Technology for Skin Rejuvenation and Homeostasis by Fermented Product with Micro-needle Therapy System (마이크로니들 시술에 의한 발효제품의 피부 재생 및 항상성 강화 기술)

  • Kim, Eun-Ju;Jung, Hyun-Ki;Kim, Sung-Jun
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • Fermented materials have been used for long time around the world and have been researched according to the excellent effect in the part of medical and food industry. However, when such materials are applied on skin, because of the skin barrier, the most effective ingredients are poorly absorbed. The absorption of the skin is exceedingly limited and the method of increasing skin absorption needs special procedures. The micro-needle therapy is a method used to improve the absorption of drug (solution) in the skin which is called "natural skin rejuvenation therapy". This therapy uses micro-needle which is equipped with very thin, delicate needles smaller than a 0.07 mm thick hair. During this therapy, the micro-needle makes small holes and helps absorb the solution into the skin. This is a very excellent therapy in skin absorption. It can be used in wide regions of the skin without any side effects and no recovery time. In 2007, the micro-needle is permitted to personal care. However, the solutions have not yet been developed professionally, and such skill is needed.

Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans

  • Xu, Mo;Choi, Eun-Young;Paik, Young-Ki
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial ${\beta}$-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans.

Blood glucose levels, insulin concentrations, and insulin resistance in healthy women and women with premenstrual syndrome: a comparative study

  • Zarei, Safar;Mosalanejad, Leili;Ghobadifar, Mohamed Amin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.2
    • /
    • pp.76-82
    • /
    • 2013
  • Objective: To compare the blood glucose levels, insulin concentrations, and insulin resistance during the two phases of the menstrual cycle between healthy women and patients with premenstrual syndrome (PMS). Methods: From January of 2011 to the August of 2012, a descriptive cross-sectional study was performed among students in the School of Medicine of Jahrom University of Medical Sciences. We included 30 students with the most severe symptoms of PMS and 30 age frequency-matched healthy controls. We analyzed the serum concentrations of glucose, insulin, and insulin resistance by using the glucose oxidase method, radioimmunometric assay, and homeostasis model assessment of insulin resistance equation, respectively. Results: No significant differences between the demographic data of the control and PMS groups were observed. The mean concentrations of glucose of the two study groups were significantly different during the follicular and luteal phases (p=0.011 vs. p<0.0001, respectively). The amounts of homeostasis model assessment of insulin resistance of the two study groups were significantly different in the luteal phase (p=0.0005). Conclusion: The level of blood glucose and insulin resistance was lower during the two phases of the menstrual cycle of the PMS group than that of the controls.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats

  • Thakur, Ajit Kumar;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.7.1-7.8
    • /
    • 2014
  • Metabolic effects of ten daily doses of standardized extract of Andrographis paniculata leaves (AP) rich in andrographolide were evaluated in a rat model of type-2 diabetes and in diet induced obese rats. AP was administered per-orally as suspension in 0.3% carboxymethylcellulose at doses of 50, 100 and 200 mg/kg/day for 10 consecutive days. Blood glucose, insulin and lipid profile of rats were measured by using enzyme kits. In addition, effects of such treatments on anti-oxidant enzymes activity and histopathological changes in various organs of diabetic rats were assessed. AP treatments reversed body weight losses and increased plasma insulin level in diabetic rats. The anti-oxidant enzymes activity became normal and histopathological changes observed in pancreas, liver, kidney and spleen of diabetic animals were less severe in extract treated groups. On the other hand, hyperinsulinemia and increased body weight gains observed in high fat or fructose fed rats were less severe in the extract treated groups. These observations revealed therapeutic potentials of the extract for treatments of diabesity associated metabolic disorders, and suggest that the effects of the extract on insulin homeostasis depend on the metabolic status of animals. Activation of cytoprotective mechanisms could be involved in its mode of action.

Emerging role of RUNX3 in the regulation of tumor microenvironment

  • Manandhar, Sarala;Lee, You Mie
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.174-181
    • /
    • 2018
  • A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy.

Molecular Size and Distribution of Zinc-binding Ligands in Rat Pancreatic Tissue

  • Kwun, In-Sook;Donald Oberleas
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.219-224
    • /
    • 1997
  • The pancreas is an important organ in the maintenance of zine homeostasis. The pancreatic tissue used in this study was obtained from rats fed varying levels of dietary Ca nd phytate followed by intraperitoneal {TEX}${65}^Zn${/TEX} injection. THe objective of this study was to determine the molecular size and distribution of compounds that may represent zinc-binding complexes in pancreatic tissue homogenates. The supernatant of the homogenized pancreatic tissue was separated using a Sephadex G-75 column with Tris buffer at pH 8.1. All subfractions were assayed for zinc, protein and {TEX}${65}^Zn${/TEX} activity. The elution of subfractions from pancreatic tissue homogenates showed a prominent peak corresponding to the high molecular weight protein standard (>66kd). A sall molecular weigth protein (<6.5kd), that was absorbed at 280nm, was also present: prominently in low Ca group, however not much as in high Ca group. These small compounds may combine weakly with zinc in pancreatic tissue an serve as zinc-binding ligands in pancreatic/biliary fluid. In the duodenum, these ligands dissociate zinc into an ionic form which becomes vulnerable to phytate complexation.

  • PDF

Epigenetic Responses Programmed by Prenatal Stress : $F_1$ Male Rat Model (출생 전 스트레스에 의해 프로그램된 후생학적 반응 : $F_1$ 수컷 흰쥐 모델)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The efficient strategies to cope with unpredictable and/or harmful environmental changes have been developed by every organism in order to ensure its survival and continuity of it's own species. As a results, all living things on earth maintain dynamically internal stability via a process termed 'homeostasis' among physiological parameters despite of external environment changes. Stress is an emotional and physical response to threat homeostasis. Stress may have not only transient but rather permanent effect on the organism; recent evidence clearly show that prenatal stress could organize or imprint permanently physiological systems without any change in genetic codes, a process known as 'epigenetic programming'. In this review, a series of reproduction-associated events occurred in prenatally stressed male rats such as alteration in the structure of sexually dimorphic brain regions, modification of neurotransmitter metabolism, changes in reproductive endocrine status, and finally, disorders of sexual behavior will be introduced. The fetal brain is highly sensitive to prenatal programming and glucocorticoids in particular have powerful brain-programming properties. The chronic hyperactivation of fetal brain by maternal stress-induced glucocorticoid input will provide new program via increasing the neuroplasticities. This 'increased neuroplasticities' will be the basis for the 'increased phenotypic plasticities' rendering the organism's better adaptation to environmental challenges. In conclusion, organism who experienced 'harsh' environment in his fetal life seems to give up a certain portion of reproductive competence to make good chance of survival in his future life by epigenetic (re)programming.

  • PDF

Improvement of blood glucose homeostasis in mice fed with Capsosiphon fulvescens extract-added whole wheat cookie (매생이 추출물 첨가 통밀 쿠키의 마우스 혈당 항상성 개선 효과)

  • Lim, Jae-Min;Chun, Su-Hyun;Jeong, Yu-Jin;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.313-320
    • /
    • 2021
  • The present study aimed to investigate the effect of whole wheat cookie supplemented with Capsosiphon fulvescens (CF) extract on serum glucose homeostasis in C57BL/6 mice. This study examined whether the same effect was demonstrated for whole wheat cookie in comparison to previous research documenting the glucose-lowering effect of food products combined with CF extract. Mice were divided into three groups depending on the diet administered: normal cookie (NC), whole wheat cookie (WC), and WC blended with CF extract (WCFE). After 4 weeks of administering the experimental diet, the blood glucose level, serum insulin level, and homeostatic model assessment for insulin resistance index were found to be significantly lower in the WCFE group than in the NC and WC groups. These results suggest that whole wheat cookie containing CF extract is effective in preventing insulin resistance and maintaining blood glucose homeostasis.