• Title/Summary/Keyword: $In_2O_3$ nanoparticles

Search Result 624, Processing Time 0.026 seconds

Flow Characteristics of Al2O3 Nanofluids with Nanoparticles of Various Shapes (나노입자 형상 변화에 따른 알루미나 나노유체의 유동 특성)

  • Hwang, Kyo-Sik;Ha, Hyo-Jun;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • To study the flow characteristics of water-based $Al_2O_3$ nanofluids according to the shape of the nanoparticles, we measure the pressure drop in a fully developed laminar flow regime. Water-based $Al_2O_3$ nanofluids of 0.3 Vol.% with sphere-, rod-, platelet-, and brick-shaped nanoparticles are manufactured by the two-step method. Zeta potential is measured to examine the suspension and dispersion characteristics, and TEM image is considered to confirm the shape characteristics of the nanoparticles. The experimental results show that the pressure drop of $Al_2O_3$ nanofluids depends on the shape of the nanoparticles although the nanofluids has same volume fraction of nanoparticles. This is explained by the surface area per unit mass of the nanoparticles and the size of the nanoparticles suspended in the base fluids.

Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao;Zhang, Yunhuai;Xiao, Peng;Yang, Yannan;Lou, Qing;Yang, Fei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1613-1616
    • /
    • 2012
  • Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $mF.cm^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $mA.cm^{-2}$, and the electrode also exhibited excellent electrochemical stability.

Engineering and Economic Evaluation of Production of MgO Nanoparticles using a Physicochemical Method

  • Priatna, Deri;Nandiyanto, Asep Bayu Dani
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2019
  • We conducted research to evaluate economically and engineering about the synthesis of Magnesium Oxide, MgO, nanoparticles using physicochemical methods. The method used was economic evaluation by calculating GPM, BEP, PBP, and CNPV. The other method used was engineering perspective. MgO nanoparticles were synthesized by reacting Mg(NO3)2 and NaOH with a mole ratio 1: 2. Mg(OH)2 formed was heated and calcined to remove water content and to oxidation to form MgO. An economic evaluation by calculating GPM and CNPV for the production of MgO nanoparticles on an industrial scale shows that the payback period (PBP) occur in the third year and profits increase each year. Tax variations show that the higher of tax, the lower profits received. When there was an increase of selling prices, the profit was greater. The variable cost used is the price of raw material. When there was an increased in the variable cost price, the payback period was longer and the profits was reduced. The benefit of this research is knowing the industrial production of MgO nanoparticles is beneficial. The function of MgO nanoparticles is a material for the manufacture of ceramics and can be used as an antimicrobial in the water filtration process.

Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application (에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.

Enhanced flux pinning property of GdBa2Cu3O7-x films by ferromagnetic surface decoration

  • Song, C.Y.;Oh, J.Y.;Ko, Y.J.;Lee, J.M.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.21-25
    • /
    • 2020
  • We investigated the flux pinning property of GdBa2Cu3O7-x (GdBCO) films on top of La0.7Sr0.3MnO3 (LSMO) nanoparticles deposited by a surface decoration. Both GdBCO films and LSMO nano particles were deposited by pulsed laser deposition and the number of laser pulses were varied from 80 to 320 in order to control the density of the LSMO nanoparticles. The magnetization data at 77 K showed that the critical current density (Jc) was enhanced in all of the GdBCO films with LSMO nanoparticles and that the Jc enhancement was found to be inversely proportional to the LSMO nanoparticle density. Structural analyses revealed that LSMO nanoparticles induce a compressive strain in the GdBCO films resulting in a disordering in the CuO2 plane. Therefore, the enhanced flux pinning property in the GdBCO with LSMO nanoparticles was attributed to the competing effect between the increase of pinning centers and the increase of compressive strain in the superconducting phase.

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.

Antimicrobial Activity of Caffeic acid-functionalized ZnO Nanoparticles

  • Choi, Kyong-Hoon;Hong, Dae Eui;Kim, Ho-Joong;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.380.2-380.2
    • /
    • 2016
  • The emergence of new infectious diseases, the resurgence of several infections that appeared to have been controlled and the increase in bacterial resistance have created the necessity for studies directed towards the development of new antimicrobials. In the present study, we have synthesized a novel antioxidant ZnO nanoparticle that is newly designed and prepared by simple surface modification process. Antioxidative functionality is provided by the immobilization of antioxidant 3-(3,4-dihydroxyphenyl)-2-propenoic acid (caffeic acid, CA) onto the surface of ZnO nanoparticles. Microstructure and physical properties of the ZnO@CA nanoparticles were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and steady state spectroscopic methods. Antimicrobial Activities of ZnO@CA nanoparticles were measured against various bacterial strains using antibacterial testing methods.

  • PDF

Synthesis and Magnetic Properties of Dendron Capped Fe2O3 Nanoparticles

  • George, Sheby M.;Hong, In-Seok;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1545-1553
    • /
    • 2008
  • Using a one-pot reaction technique, monodisperse $\gamma-Fe_2O_3$ nanoparticles were prepared by thermal decomposition of Fe$(CO)_5$ in the presence of a long alkyl chain terminated dendron surfactant. The size of the particles is controlled by adjusting the concentration of the dendron ligands in the reaction solution. Spherical, 2 nm sized nanoparticles were obtained with a 3:1 ratio of dendrons to Fe$(CO)_5$, while 4.6 nm sized particles were formed with a 1:3 ratio. Superparamagetic properties of 2 nm, 4 nm, and 4.6 nm sized particles were measured using a SQUID magnetometer.

Change in the photocatalytic activity of ZnO nanoparticles by additive H2O

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Choi, Jin-Woo;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.285-285
    • /
    • 2010
  • Zinc oxide (ZnO) is a direct band gap semiconductor with 3.37 eV, which has in a hexagonal wurtzite structure. ZnO is a good candidate for a photocatalyst because it has physical and chemical stability, high oxidative properties, and absorbs of ultraviolet light. During ZnO is irradiated by UV light, redox (reduction and oxidation) reactions will occur on the ZnO surface, generating the radicals O2- and OH. These two powerful oxidizing agents have been proven to be effective in decomposition of harmful organic materials, converting them into CO2 and H2O. Therefore, we assume that oxygen on the surface of ZnO is a very important factor in the photocatalytic activities of ZnO nanoparticles. Recently, ZnO nanoparticles are studied in various application fields by many researchers. Photocatalyst research is progressing much in various application fields. But the ZnO nanoparticles have disadvantage that is unstable in water in comparison titanium dioxide (TiO2). The Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoaprticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their phtocatalytic activity changes. The characterization of ZnO nanoparticles were analyzed by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and BET test. Also we defined the photocatalytic activity of ZnO nanoparticles using UV-VIS Spectroscopy. And we explained changing of photocatalytic activity after the water treatment using X-ray Photoelectron Spectroscopy (XPS).

  • PDF