• 제목/요약/키워드: $I{\kappa}B-{\alpha}$ $NF-{\kappa}B$

검색결과 443건 처리시간 0.025초

돼지 말초혈액 단핵구세포에서 trans-10, cis-12 conjugated linoleic acid의 TNF-${\alpha}$ 생산에 대한 nuclear factor-${\kappa}B$ p65 활성 조절 효과 (Trans-10, cis-12 Conjugated Linoleic Acid Modulates Nuclear Factor-${\kappa}B$ p65 Activity on the Production of Tumor Necrosis Factor-${\alpha}$ in Porcine Peripheral Blood Mononuclear Cells)

  • 김영범;이일우;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제28권2호
    • /
    • pp.190-195
    • /
    • 2011
  • 본 연구에서 돼지 PBMC에 t10c12-CLA 처리는 TNF-${\alpha}$생산을 증가시켰으나, LPS 자극 PBMC에서는 TNF-${\alpha}$생산을 감소시켰다. t10c12-CLA 처리는 PBMC의 inhibitory ${\kappa}B$ ($I{\kappa}B$)-${\alpha}$ 단백질 분해를 증가시키고 NF-${\kappa}B$ p65 활성 수준을 증가시켰다. 그러나 LPS 자극 PBMC에서는 상반되는 효과가 관찰되었다. 특히, LPS 비자극 PBMC에서 t10c12-CLA는 NF-${\kappa}B$ 저해제인 caffeic acid phenethyl ester (CAPE)를 처리한 경우 NF-${\kappa}B$ p65 활성 수준을 증가시켰으나 반대로 LPS로 자극한 CAPE 처리 PBMC에서는 NF-${\kappa}B$ p65 활성 수준을 억제시켰다. 이상의 결과는 t10c12-CLA가 돼지 PBMC에 있어 LPS 자극 유무에 따라 다른 효과를 가질 수 있으며, 이는 NF-${\kappa}B$ p65 활성도의 변화와 관련성이 있음을 보여주고 있다.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Isoliquiritigenin attenuates spinal tuberculosis through inhibiting immune response in a New Zealand white rabbit model

  • Wang, Wenjing;Yang, Baozhi;Cui, Yong;Zhan, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.369-377
    • /
    • 2018
  • Spinal tuberculosis (ST) is the tuberculosis caused by Mycobacterium tuberculosis (Mtb) infections in spinal curds. Isoliquiritigenin (4,2',4'-trihydroxychalcone, ISL) is an anti-inflammatory flavonoid derived from licorice (Glycyrrhiza uralensis), a Chinese traditional medicine. In this study, we evaluated the potential of ISL in treating ST in New Zealand white rabbit models. In the model, rabbits (n=40) were infected with Mtb strain H37Rv or not in their $6^{th}$ lumbar vertebral bodies. Since the day of infection, rabbits were treated with 20 mg/kg and 100 mg/kg of ISL respectively. After 10 weeks of treatments, the adjacent vertebral bone tissues of rabbits were analyzed through Hematoxylin-Eosin staining. The relative expression of Monocyte chemoattractant protein-1 (MCP-1/CCL2), transcription factor ${\kappa}B$ ($NF-{\kappa}B$) p65 in lymphocytes were verified through reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and enzyme-linked immunosorbent assays (ELISA). The serum level of interleukin (IL)-2, IL-4, IL-10 and interferon ${\gamma}$ ($IFN-{\gamma}$) were evaluated through ELISA. The effects of ISL on the phosphorylation of $I{\kappa}B{\alpha}$, $IKK{\alpha}/{\beta}$ and p65 in $NF-{\kappa}B$ signaling pathways were assessed through western blotting. In the results, ISL has been shown to effectively attenuate the granulation inside adjacent vertebral tissues. The relative level of MCP-1, p65 and IL-4 and IL-10 were retrieved. $NF-{\kappa}B$ signaling was inhibited, in which the phosphorylation of p65, $I{\kappa}B{\alpha}$ and $IKK{\alpha}/{\beta}$ were suppressed whereas the level of $I{\kappa}B{\alpha}$ were elevated. In conclusion, ISL might be an effective drug that inhibited the formation of granulomas through downregulating MCP-1, $NF-{\kappa}B$, IL-4 and IL-10 in treating ST.

Hepatitis Delta Virus Large Antigen Sensitizes to TNF-α-Induced NF-κB Signaling

  • Park, Chul-Yong;Oh, Sang-Heun;Kang, Sang Min;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.49-55
    • /
    • 2009
  • Hepatitis delta virus (HDV) infection causes fulminant hepatitis and liver cirrhosis. To elucidate the molecular mechanism of HDV pathogenesis, we examined the effects of HDV viral proteins, the small hepatitis delta antigen (SHDAg) and the large hepatitis delta antigen (LHDAg), on $NF-{\kappa}B$ signaling pathway. In this study, we demonstrated that $TNF-{\alpha}-induced$ $NF-{\kappa}B$ transcriptional activation was increased by LHDAg but not by SHDAg in both HEK293 and Huh7 cells. Furthermore, LHDAg promoted TRAF2-induced $NF-{\kappa}B$ activation. Using coimmunoprecipitation assays, we demonstrated that both SHDAg and LHDAg interacted with TRAF2 protein. We showed that isoprenylation of LHDAg was not required for the increase of $NF-{\kappa}B$ activity. We further showed that only LHDAg but not SHDAg increased the $TNF-{\alpha}-mediated$ nuclear translocation of p65. This was accomplished by activation of $I{\kappa}B_{\alpha}$ degradation by LHDAg. Finally, we demonstrated that LHDAg augmented the COX-2 expression level in Huh7 cells. These data suggest that LHDAg modulates $NF-{\kappa}B$ signaling pathway and may contribute to HDV pathogenesis.

미세조류 유래 astaxanthin의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae)

  • 곽태원;차지영;이철원;김영민;유병홍;김성구;김종명;박성하;안원근
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1377-1384
    • /
    • 2011
  • Astaxanthin (ATX)은 다양한 생명체에서 생성되는 카로티노이드 색소이다. 본 연구에서는 ATX가 RAW264.7 cell에서 LPS에 의한 inducible nitric oxide synthase (iNOS), nitric oxide (NO), 염증성 사이토카인, nuclear factor-kappa B (NF-${\kappa}B$)와 reactive oxygen species (ROS)의 생성을 억제 시키는 지 또한, superoxide radical 소거능이 있는 지를 조사하였다. iNOS와 NF-${\kappa}B$는 immunoblot analysis로, interleukin (IL)-6와 tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$)는 ELISA 법으로 분석하였다. NO 양은 nitrite의 양을 측정하였고, ROS는 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) 법으로 superoxide radical 소거능은 superoxide radical scavenging activity assay로 검증하였다. 100 ${\mu}M$의 ATX 농도에서 LPS로 유도된 NO, IL-6 및 TNF-${\alpha}$ 같은 염증성 사이토카인의 생성 뿐만 아니라 iNOS 및 NF-${\kappa}B$의 발현도 억제되었다. 특히, IL-6 및 TNF-${\alpha}$ 생성에 있어 ATX의 최대 억제율은 각각 65.2% 및 21.2% 이었으며 LPS로 유도된 NF-${\kappa}B$의 전사활성을 억제하였다. 이러한 현상은 세포질에서 핵으로 NF-${\kappa}B$의 전위를 억제하는 것과 관련이 있다. 또한, 25-100 ${\mu}M$의 ATX 농도에서 세포 내 ROS 생성을 억제하였으며, 5 mg/ml 농도의 ATX는 동일농도의 ${\alpha}$-tocopherol에 비해 superoxide radical 소거능이 1.33배 높았다. 이러한 결과들은 ATX가 대식세포에서 ROS 생성 및 NF-${\kappa}B$ 활성을 저해하므로 iNOS의 발현, NO 및 염증성 사이토카인의 생성을 억제하며, 또한 우수한 superoxide radical 소거능을 보유한다는 것을 나타내었다. 결론적으로, ATX가 항염증제 및 항산화제로서 유용하게 사용될 수 있을 것으로 사료된다.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

lipopolysaccharide로 자극된 대식세포에서 금앵자의 Nitric Oxide 생성 및 $NF-{\kappa}B$ 활성 억제 효과 (Inhibitory Effect of Rosa laevigata on Nitric Oxide Synthesis and $NF-{\kappa}B$ Activity in lipopolysaccharide-stimulated Macrophages)

  • 하현희;박순영;고우신;장정수;김영희
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.385-389
    • /
    • 2008
  • Nitric oxide (NO) has been suggested to play an important role in endotoxin-mediated shock and inflammation. In this study, we investigated the effect of Rosa laevigata Michx. (Rosaceae) on the production of NO and the molecular mechanism of its action. Rosa laevigata inhibited NO generation and iNOS expression in LPS-stimulated murine macrophages. Activity of nuclear $factor{-\kappa}B\;(NF{-\kappa}B)$ and the degradation of $I{\kappa}B-{\alpha}$ were suppressed by Rosa laevigata. Furthermore, extracellular signal-stimulated kinase (ERK), which is known to be involved in $NF{-\kappa}B$ activation, is inhibited by Rosa laevigata. These results suggest that Rosa laevigata could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $NF{-\kappa}B$ activity.

결핵균을 탐석한 말초혈액단핵구 배양상층액에 의해 유도되는 폐상피세포주에서의 NF-${\kappa}B$ 의존성 IL-8 분비기전 (NF-${\kappa}B$ Dependent IL-8 Secretion from Lung Epithelial Cells Induced by Peripheral Blood Monocytes Phagocytosing Mycobacterium Tuberculosis)

  • 박재석;지영구;최은경;김건열;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제51권4호
    • /
    • pp.315-324
    • /
    • 2001
  • 연구배경 : IL-8은 강력한 화학주성인자로서 결핵감염 부위로 염증세포들을 동원함으로서 결핵균에 대한 숙주의 방어기전에 있어서 중요한 역할을 한다. IL-8의 유전자의 발현에 있어서 NF-${\kappa}B$가 중요한 역할을 한다. 저자들은 결핵 감염시 폐상피세포가 NF-${\kappa}B$ 의존성으로 IL-8을 분비하는지 알아보고자 하였다. 방 법 : 말초혈액단핵구에 결핵균을 감염시키고 24시간 배양 후 배양상층액(CoMTB)을 얻었다. 결핵균, CoMTB로 자극한 A549 세포주의 IL-8 분비 정도를 ELISA 방법으로 측정하였다. CoMTB로 자극한 A549 세포주의 IL-8 mRNA 의 발현 정도를 RT-PCR로, $I{\kappa}B{\alpha}$의 분해를 western blot 분석으로, NF-${\kappa}B$의 핵이동과 DNA 결합은 electrophoretic mobility shift assay(EMSA)를 이용하여, 그리고 NF-${\kappa}B$ 의존성 IL-8 유전자의 전사활성은 luciferase reporter gene assay를 이용하여 측정하였다. 결 과 : A549 세포주를 CoMTB로 24시간 자극하여 얻은 배양액의 IL-8 농도는 $46.8{\pm}4.8\;ng/ml$로 분비하여 결핵균으로 직접 자극하였을 때의 $6.8{\pm}2.9\;ng/ml$보다 높았다. CoMTB로 A549 세포주를 자극하였을 때 IL-8 mRNA의 발현이 증가하였고, $I{\kappa}B{\alpha}$의 분해가 일어났으며, NF-${\kappa}B$의 핵이동과 DNA 결합이 일어났으며, NF-${\kappa}B$ 의존성 IL-8 유전자의 전사활성이 증가하였다. 결 론 : 결핵병변에서 폐상피세포는 결핵균을 탐식한 단핵식 세포와의 상호작용에 의해 NF-${\kappa}B$ 의존성으로 IL-8을 분비한다.

  • PDF