• Title/Summary/Keyword: $H_2O_2$ depolarizer

Search Result 2, Processing Time 0.019 seconds

Effect of KOH Electrolyte and H2O2 Depolarizer on the Power Characteristics of Al/Air Fuel Cells (Al/Air 연료전지의 출력특성에 미치는 KOH 전해질과 H2O2 감극제의 영향)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.303-307
    • /
    • 2015
  • The effects of additive such as $H_2O_2$ in KOH electrolyte solution for the Aluminum/Air fuel cell were investigated with regard to electric power characteristics. The power generated by a Al/Air fuel cell was controlled by the KOH electrolyte solution and $H_2O_2$ depolarizer. Higher cell power was achieved when higher KOH electrolyte concentration and higher $H_2O_2$ depolarizer amount. The maximum power was increased by the increase amount $H_2O_2$ depolarizer, it was found that $H_2O_2$ depolarizer inhibits the generation of hydrogen and the polarization effect was reduced as a result. Internal resistance analysis was employed to elucidate the maximum power variation. Higher internal resistance created internal potential differences that drive current dissipating energy. In order to improve the output characteristics of the Al/Air fuel cell, it is thought to be desirable to increase the KOH electrolyte concentration and increase the $H_2O_2$ addition amounts.

A Study on the Preparation of Electrolytic Manganese Dioxide (전해 이산화망간 제조에 관한 연구)

  • Lee Mook Lee;Jae Won Kim;Ung Up Chi;Jong Ju Shin
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.306-313
    • /
    • 1973
  • With the intention of obtaining technical data for the industrial production of ${\gamma}-MnO_2$ for dry cell depolarizer by electrolytic oxidation of acidic manganese sulfate solution made from domestic rhodochrosite, optimum conditions of ore leaching, purification of leached solution and electrolytic oxidation of divalent manganes to tetravalent were investigated using simulated micro pilot plant having a production capacity of 4 kg of $MnSO_4$ per day. The nature and quality of the products were investigated by means of chemical analysis, DTA, X-ray diffraction and electron microscopy. The cell activity of $MnO_2$were examined by cell discharging character measurements. The optimum electrolysis conditions were as follow: Temperature of the electrolyte, above $90^{\circ}C$; current density, 0.7${\sim}A/dm^2$; anode materials, graphite or lead ; concentration of electrolyte, $MnSO_4 50{\sim}150g/l $ g/l and $H_2SO_4/MnSO_4 = 0.15{\sim}0.25$. Under the best condition the current efficiency was 99% and the products were almost pure ${\gamma}-MnO_2$. The cell discharging character were good and almost the same as that of regular grade commercial electrolytic manganese dioxide.

  • PDF