• 제목/요약/키워드: $H_2O_2$ 산화

검색결과 1,882건 처리시간 0.03초

산화아연에서의 CO, $C_2H_4$의 산화반응 (Oxidation Reaction of CO and $C_2H_4$ on Zinc Oxide)

  • 한종수;전학제
    • 대한화학회지
    • /
    • 제24권3호
    • /
    • pp.218-224
    • /
    • 1980
  • 산화아연에 흡착한 산소종과 CO, $C_2H_4$의 표면반응을 EPR 분광법을 사용하여 연구했다. (1) $25^{\circ}$, $100^{\circ}$, $200^{\circ}$, $300^{\circ}C$등 여러온도에서 산소가 흡착된 산화아연의 EPR 스펙트럼을 비교하여 g = 2.014의 피이크가 산소결합에 trap된 $O^-$에서 나옴을 알았다. (2) 각 온도에서 산소가 흡착된 산화아연을 CO, $C_2H_4$와 접촉시켜 흡착종의 반응성을 알아보았으며, 안정한 $O_2^-$의 EPR스펙트럼을 이용하여 탈착된 표면을 검출했다. (3) 비교적 높은 온도에서 존재하는 $O^-$$25^{\circ}C$에서도 CO, $C_2H_4$와 반응하여 완전산화반응을 하며 생성된 흡착종들은 $200^{\circ}C$에서 탈착되었다. (4) $180^{\circ}C$까지 주로 존재하는 $O_2^-$는 CO의 반응하지 않았고 $C_2H_4$와 반응하여 $200^{\circ}C$에서 탈착되는 g=2.002의 등방성 EPR 스펙트럼을 갖는 생성물을 만들었다.

  • PDF

메탄올 용매에서 산소 첨가된 다섯자리 Schiff Base Cobalt(Ⅲ) 착물들의 활성 촉매에 의한 Hydrazobenzene의 산화반응 (Oxidation Reaction of Hydrazobenzene by Activated Catalysts of Pentadentate Schiff Base Cobalt(Ⅲ)-O2 Complexes in Methanol Solvent)

  • 노윤정;박동화;조기형;김상복;최용국
    • 대한화학회지
    • /
    • 제38권4호
    • /
    • pp.302-308
    • /
    • 1994
  • 산소가 포화된 메탄올 용액에서 다섯자리 Schiff base cobalt(II) 착물인 [Co(II)(Sal-DPT)(H$_2$O)] 와 [Co(II)(Sal-DET)(H$_2$O)]들의 활성촉매에 의한 hydrazobenzene(H$_2$AB)의 산화 주생성물은 trans-azobenzene(trans-AB)이다. UV-visible분광광도법에 의해 이들 반응의 속도상수 $k=6.06{\times}10^{-3}sec^{-3}$$2.50{\times}10^{-3}sec^{-1}$로 주어짐을 알았다. 균일 산화 활성촉매에 의한 H$_2$AB의 산화반응 메카니즘은 다음과 같은 과정으로 주어진다. H$_2$AB + Co(II)(L)(H$_2$O) + O$_2$ $\rightleftharpoons^K_{methanol}Co(III)(L)O_2{\cdot}H_2AB + H_2O\longrightarrow^{k}Co(II)(L) + trans-AB + H_2O_2$ (L: Sal-DPT and Sal-DET).

  • PDF

사진현상폐수의 UV-자유반사 반응조에서의 UV/H2O2 고급산화처리 (UV/H2O2 Advanced Oxidation of Photo Processing Chemicals in a UV-free Reflecting Reactor)

  • 최경애;김영주
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.241-249
    • /
    • 2000
  • 난분해성 폐수인 사진현상폐수의 $UV/H_2O_2$$H_2O_2$의 고급산화에 의한 오염물질의 제거 실험을 실시하였다. $UV/H_2O_2$ 산화에서 $H_2O_2$의 분해로 $OH^-$ 라디칼이 발생되는데 파장 190~300 nm의 UV가 반응의 촉매 역할을 한다. $OH^-$ 라디칼은 수명은 짧으나 강력한 산화력을 갖고 있는데, 이 산화력은 폐수처리에서 폐수나 액상 폐기물의 유기물질을 제거하는데 이용된다. 본 연구에서 기존의 tube형 반응조의 단점을 보완한 UV-자유반사 반응조를 제작하여 사용하였으며 UV원으로는 수은 고압램프가 이용되었다. 본 실험에서는 반응시간과 $H_2O_2$ 주입량 및 pH 변화에 따른 오염물의 처리효율의 변화를 조사하였는데 $H_2O_2$의 주입량이 증가할수록 처리효율이 높았으나 그 차이는 미미하였으며, pH 8에서 보다는 3에서 처리효율이 약간 높았으나 그 차이 역시 크지 않았다. 본 연구에서 사진현상폐수 처리의 적정 운전조건은 pH 8, $H_2O_2$ 주입량은 유입수의 COD를 기준으로 한 1.3배 화학량론적 주입으로 나타났는데, 5시간의 처리에서 $COD_{Cr}$, TOC 및 색도의 제거효율은 각각 약 47.5%, 75.0% 및 91.5%로 나타났다. 반응 후 생분해성의 지표인 BOD/COD 비는 초기 0.04에서 0.21로 약 5.3배 증가하였다.

  • PDF

(C10H8N2H)2Cr2O7를 이용한 알코올들의 산화반응과 반응속도에 관한 연구 (A Study for Kinetics and Oxidation Reaction of Alcohols using (C10H8N2H)2Cr2O7)

  • 박영조;김수종
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.927-933
    • /
    • 2022
  • 한 분자 내에 여러 가지 히드록시기가 존재 할 때, 특정 히드록시기만을 선택적으로 산화시키는 산화제는, 알코올을 포함한 유기화학 합성과정에서, 벤질알코올, 알릴알코올, 일차알코올, 이차알코올들이 있을 때, 특정 알코올만을 선택적으로 산화시키는 산화제로 사용할 수 있다. 우리는 (C10H8N2H)2Cr2O7을 합성하여, 적외선(FT-IR)과 원소분석 등으로 구조를 확인하였다. 유기용매들에서, (C10H8N2H)2Cr2O7을 이용하여 벤질알코올의 산화반응을 측정한 결과, 유기용매의 유전상수 값이 커짐에 따라 반응성이 증가했다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여알코올들의 산화반응을 측정한 결과, 벤질알코올, 알릴알코올, 일차알코올 및 이차알코올들을 알데히드나 케톤(65%~95%)으로 전환시키는 효율적인 산화제였다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여 알코올 혼합물들의 산화반응성을 측정한 결과, 이차알코올들이 있을 때, 벤질알코올, 알릴알코올, 일차알코올들을 선택적으로 산화(15%~95%) 시켰다. H2SO4 촉매를 첨가 후, DMF 용매에서, (C10H8N2H)2Cr2O7은 벤질알코올과 그의 유도체들을 효과적으로 산화시켰다. Hammett 반응상수(ρ) 값은 -0.69(308K) 이었다. 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어났다.

Improvement in Bias Stability of Amorphous IGZO Thin Film Transistors by High Pressure H2O2 Annealing

  • 송지훈;김효진;한영훈;백종한;정재경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.231.2-231.2
    • /
    • 2014
  • 훌륭한 전기적 특성을 갖는 ZnO 기반의 산화물 반도체 박막트랜지스터(TFT)는 AMOLEDs에 적용될 수 있다. 하지만 이러한 장점에도 불구하고 산화물 반도체 TFT소자에 전압이 인가되었을 때 문턱 전압이 이동하게 되는 안정성 문제를 갖는다. 따라서 이를 해결하기 위한 연구가 널리 진행 되고 있다. 본 연구소에서는 고압 분위기 열처리를 통해 안정성의 원인으로 작용할 수 있는 산소공공(Oxygen vacancy)을 감소시키는 연구를 진행하였다. 산화물 반도체 TFT소자의 안정성을 향상시키는 대표적인 분위기 열처리로는 산소 고압 열처리(HPA)가 있으며, 또한 H2O 기체를 사용한 열처리를 통해 TFT소자의 안정성을 높일 수 있다는 연구 결과가 보고된 바 있다. 본 연구에서는 IGZO TFT소자에 H2O보다 더 큰 반응성을 갖는 산화제인 H2O2 기체를 사용한 HPA를 통해 positive bias stress(PBS) 및 negative bias illumination stress(NBIS) 조건에서 안정성이 향상됨을 확인하였고 이를 H2O 기체를 사용한 경우와 비교하였다. 그 결과 H2O2 기체를 산화제로 사용할 때 기존 H2O 기체에 비해 효과적인 PBS 및 NBIS 신뢰성 개선을 확인하였다.

  • PDF

Cell-free Myeloperoxidase/$H_2O_3$/Chloride System에서 Singlet Oxygen이 관여한다는 실험적 증거 (Evidence for Singlet Oxygen Involvement in Cell-free Myeloperoxidase/$H_2O_2$/ Chloride Sytem: Exclusion of Hydroxyl Radical Involvement)

  • 정명희;김용식
    • 대한약리학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 1984
  • 인체 백혈구에서 추출한 myeloperoxidase(MPO)에 의한 NADH산화 및 methional에서의 ethylene 생성을 관찰하여 cell-free MPO/$H_2O_2/Cl^-$ system에서 관여하는 oxygen metabolites가 무엇인지를 규명하기 위하여 본 실험을 수행하였다. 1) NADH는 MPO/$H_2O_2/Cl^-$에 의하여 산화됨을 확인하였다. 즉 MPO, $H_2O_2$$Cl^-$가 존재하는 medium에서 NADH의 산화는 azide와 catalase에 의하여, 그리고 medium에서 $Cl^-$를 제거하였을 때 완전히 제거되었다. 2) 이와같은 MPO/$H_2O_2/Cl^-$에 의한 NADH산화는 $^1O_2$ 제거물질인 1,4-diazabicyclo(2,2,2) octane(DABCO)에 의하여 완전히 억제 되었으나 $OH{\cdot}$의 제거물질인 mannitol, benzoate, formate 및 methanol에 의해서는 영향을 받지 아니하였다. 3) 또한 methinal을 MPO/$H_2O_2/Cl^-$으로 처리하였을 때는 ethylene이 전혀 검출되지 아니하였으나 기타 $OH{\cdot}$을 생성할 것으로 알려진 산화계인 xanthine/xanthine oxidase 및 $Ca^{++}-H_2O_2$에 의해서는 현저한 ethylene생성을 관찰하였다. 이상의 결과는 Cell-free MPO/$H_2O_2/Cl^-$ 산화계에서는 $^1O_2$이 산화반응에 관여하는 주된 산소 대사물이며 $OH{\cdot}$은 생성되지 아니함을 알 수 있었다.

  • PDF

Cr (Ⅵ)-Isoquinoline 화합물에 의한 알코올들의 산화반응에 관한 연구 (Ⅰ) (A Study for Oxidation Reaction of Alcohols with Cr (Ⅵ)-Isoquinoline Compound (Ⅰ))

  • 양정성;박영조;백형철
    • 대한화학회지
    • /
    • 제34권6호
    • /
    • pp.534-538
    • /
    • 1990
  • H$_2$O을 용매로 하여 헤테로고리 염기인 이소퀴놀린과 CrO$_3$를 반응시켜 Cr(Ⅵ)화합물인 [$C_9H_7$NH]$_2Cr_2O_7$을 얻었다. 이 화합물은 비흡수성이면서 물에 잘 녹았다. 그리고 원소분석, 적외선 분광법으로 이 화합물의 구조가 [$C_9H_7$NH]$_2Cr_2O_7$임을 확인하였다. 또한, 이 화합물이 여러 가지 알코올을 알데히드나 케톤으로 전환시킬 수 있는 산화제로 작용하는가를 알아보기 위하여 알릴, 일차, 이차 알코올을 각각 산화반응에 이용한 결과 알코올들에 대해 효율적인 산화제로 작용하였다.

  • PDF

실리카계 물질에 의한 산화철 입자의 표면개질 (Surface Modification of Iron Oxide Particle by Silica-contained Materials)

  • 류병환;이정민;고재천
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.830-836
    • /
    • 1997
  • 본 실험에서는 물유리를 사용하여 산세척에 의하여 제조된 산화철 입자의 표면개질에 대하여 연구하였다. 사용한 물유리의 $SiO_2$$Na_2O$의 몰비($SiO_2/Na_2O$)는 1, 2, 3.5이였다. 첨가되는 실리카의 양과 pH에 따라 산화철 현탁액의 분산성을 입자의 표면하전과 침강속도에 의하여 평가하였다. 그리고, 중성 영역에서 산화철 입자의 분산안정성을 유지할 수 있는 표면개질제(실리카)의 양을 도출하였으며, 물유리에 의한 산화철 입자의 표면개질을 습식 볼밀링에 의하여 슬러리 상태에서 실시하였다. 그 결과, 표면처리한 산화철 현탁액의 분산 안정성은 실리카의 양과 pH에 상호 의존하였다. 미처리한 산화철은 등전점인 pH 8에서 분산안정성을 잃고 있었으나, 산화철에 대하여 약 0.8wt%의 실리카로 표면처리한 산화철은 pH 5 이상 중성영역에서 분산안정성을 나타내었으며, 음이온성 계면활성제를 0.2wt% 이상 첨가에 의한 분산안정성이 더욱 증가되었다.

  • PDF

양어용수 재이용을 위한 전 산화처리의 효과 (Effects of Pre-Oxidation for Recirculation of Aquaculture Wastewater)

  • 임재림;신항식
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.103-111
    • /
    • 2000
  • 양어용수 재순환을 위한 생물여과상의 처리효율을 향상시키기 위하여 전처리로서 오존처리와 고급산화($H_2O_2/O_3$) 처리가 다양한 조건하에서 시도되었다. 오존처리시 암모니아는 일차속도반응식으로 제거되었으며, 중탄산염 알칼리도가 증가할수록 제거효율이 향상되어 200 mg/L as $CaCO_3$에서 약 46%가 제거되었다. 고급산화법($H_2O_2/O_3$)을 적용시 알칼리도를 포함한 폐수의 경우 중탄산염의 저해작용으로 암모니아 제거율이 저조하였으나 0.1 N KOH로 초기 pH를 약 8.2로 맞추어 실험한 결과 암모니아 제거율이 오존처리시보다 향상되었다. 특히, $H_2O_2/O_3=0.25$ 조건하에서 가장 높은 암모니아 제거율을 나타내었으며, pH가 9 이상일 때 반응시간 30분동안 약 90%의 암모니아가 제거되었다. 그러나 유기물과 암모니아가 공존시 오존처리와 고급산화처리 모두 유기물과 산화제와의 빠른 반응으로 인하여 암모니아 제거율이 크게 저하되었으며, 최적 $H_2O_2/O_3$ 비도 변하였다. 암모니아 제거와 마찬가지로 고급산화처리의 경우 입자성유기물의 빠른 분해로 인하여 초기 10분간 DOC(dissolved organic carbon)농도가 증가한 후 서서히 감소하였다. 초기 암모니아 농도를 2배 이상 증가시켜도 유기물 산화에 저해를 주지 못하였다.

  • PDF

오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리 (Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes)

  • 전정철;권태옥;문일식
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.298-303
    • /
    • 2007
  • 오존을 중심으로 한 다양한 조합의 고급산화 공정(advanced oxidation process: AOP)을 이용하여 2,4,6-trinitrotoluene (TNT) 제조 공정에서 발생되는 난분해성 폐수인 red water(RW)의 유기물 및 색도 제거 연구를 수행하였다. 적용된 고급산화 공정은 $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ 공정이었으며, 유기물 및 색도 제거 효과는 $O_3 < $UV/O_3/H_2O_2/Fe^{2+}$ 공정의 순서로 나타났다. $UV/O_3/H_2O_2/Fe^{2+}$ 공정에서 최적 분해조건은 오존 유량 0.053 g/min, $H_2O_2$ 주입농도 10 mM, $FeSO_4$ 주입농도 0.1 mM로 나타났으며, 90 min 동안 유기물 및 색도 제거율은 각각 96, 100%로 나타났다. tert-butyl alcohol(t-buOH)을 이용한 수산화 라디칼(hydroxyl radical : ${\cdot}OH$)의 scavenging 실험을 통해 오존에 UV, $H_2O_2$, $FeSO_4$를 산화제로 조합함으로써 수산화 라디칼의 발생량을 더욱 증가시키고 유기물 제거율을 효과적으로 향상시킬 수 있음을 확인하였다.